Non-Confidential Business Information (Non-CBI)

Certification Test Report

509 Fabrications, Inc. **Densified Fuel-Fired Freestanding Room Heater**

Model: 509-1 Optimum

Prepared for:	509 Fabrications, Inc. 6512 W Seltice Way Post Falls, ID 83854
Prepared by:	OMNI-Test Laboratories, Inc. 13327 NE Airport Way Portland, OR 97230 (503) 643-3788
Test Period:	January 9, 2017 - September 5, 2017
Report Date:	September 2017
Report Number:	0559WS001E

All data and information contained in this report are confidential and proprietary to 509 Fabrications, Inc.. Its significance is subject to the adequacy and representative character of the samples and to the comprehensiveness of the tests, examinations, or surveys made. The contents of this report cannot be copied or quoted, except in full, without specific, written authorization from 509 Fabrications, Inc. and OMNI-Test Laboratories, Inc. No use of the OMNI-Test Laboratories, Inc. name, logo, or registered mark (O-TL) is permitted, except as expressly authorized by OMNI-Test Laboratories, Inc. in writing.

AUTHORIZED SIGNATORIES

This report has been reviewed and approved by the following authorized signatories:

QA Review:

Jared Sorenson, Technical Services Director OMNI-Test Laboratories, Inc.

Evaluation Decision:

Sebastian Button, Testing Supervisor OMNI-Test Laboratories, Inc.

September 29, 2017

Issue Date

TABLE OF CONTENTS

Section 1 – Appliance, Testing, & Results	3
1.1 Appliance Description	4
1.2 Procedures & Results Summary	6
1.3 Summary Tables	7
Table 1 – Particulate Emissions	7
Table 2 – Efficiency & CO	7
Table 3 – Test Facility Conditions	7
Section 2 – Laboratory Quality Assurance	8
2.1 Quality Assurance/Quality Control	9

- Appendix A Labeling & Owner's Manual
- Appendix B Manufacturer's Quality Assurance Plan (Confidential Business Information)
- Appendix C Manufacturer Design Information (Confidential Business Information)
- Appendix D Myren Consulting Test Report Dated April 24, 2017
- Appendix E Myren Consulting Test Report Addendum Dated September 21, 2017

Section 1 Appliance, Testing, & Results

- 1.1 Appliance Description
- 1.2 Procedures and Results Summary
- 1.3 Summary Tables

1.1 - Appliance Description

Appliance Manufacturer: 509 Fabrications, Inc.

Model Designation: 509-1 Optimum

Type: Freestanding, densified fuel burning stove

Materials of Construction: The firebox and heat exchanger are constructed primarily of mild steel. The fire chamber is lined with ceramic firebrick. The fire viewing door features 3/16-inch Neoceram glass and is sealed with a 3/4-inch fiberglass rope gasket. Flat gasketing is provided by 1/4-inch adhesive-backed fiberglass.

Fuel Feed: Densified fuel logs are loaded into the appliance via a feed tube on the top of the appliance. As the log in the fire chamber burns down, the logs in the feed tube slide down the tube to maintain a continuous, even burn. This system is designed for densified fuel logs only and is not for use with other fuel type, including cordwood.

Air Introduction System: The 509-1 Optimum features primary only a primary air intake system.

- Primary air is introduced beneath the fire chamber via a 3" diameter tube, the opening of which is adjusted via the damper discussed below. Combustion air is then routed around to the side and enters the fire chamber through a 0.90" ID tube.
 Secondary Air N/A The stove design does not utilize secondary air.
- **Tertiary Air** N/A The stove design does not utilize tertiary air.

Combustion Control Mechanisms: All combustion air settings are manually controlled via a damper plate, manipulated by a handle on the front of the appliance. The damper plate acts to restrict the opening of the 3" air feed tube described above. The range of the damper plate adjustment is such that the 3" intake tube can be completely blocked or open to a total inlet area of 5.29 in².

Internal Baffles: The main firebox baffle is located at the top of the firebox, where the combustion air passes over the convection heat exchanger tubes, the combustion air then passes through two sets of chevroned baffles located on the back of the stove before exhausting out of the combustion blower.

Other Features: The appliance features an ignitor switch for automatic lighting of the fuel, as well as a standard feature convection blower, which forces air through the 26, 1" diameter heat exchanger tubes, and out into the room above the fire chamber door. Combustion air is pulled through the fire chamber and pushed out of the flue collar via a Fasco blower.

Flue Outlet: The 3-inch diameter flue outlet is located on the bottom/rear of the unit.

Specific Written Instructions: See Appendix A of this report. All markings and instruction materials were reviewed for content prior to printing.

Appliance Photographs Model: 509-1 Optimum Test Dates: January 9, 2017, September 5, 2017

Appliance Right Side

Appliance Left Side

Appliance Front

Appliance Back

1.2 - Procedures and Results Summary

INTRODUCTION

509 Fabrications, Inc. retained *OMNI* to provide EPA certification services on the 509-1 Optimum Densified Fuel Fired Freestanding Room Heater. Testing was performed by Myren Consulting, Inc., an EPA accredited laboratory. Upon completion of testing, Myren Consulting submitted a report and all relevant data to OMNI for review. This report serves as acceptance of the test report in meeting all the technical testing and reporting requirements. A copy of the Myren Consulting report can be found in Appendix D and E of this report.

The testing was performed at Myren Consulting's testing facility in Colville, Washington. The altitude of the laboratory is 1650 feet above sea level. Myren Consulting representative Ben Myren supervised the certification testing and all testing was completed by September 5, 2017.

This report is organized in accordance with the EPA-recommended outline and is summarized in the Table of Contents immediately preceding this report. The results in this report are limited to the items submitted.

TESTING AND SAMPLING PROCEDURE

The 509-1 Optimum was tested in accordance with an alternate test method as approved by EPA. The first test, conducted on January 9, 2017, was a single integrated test run performed in accordance ASTM E2779-10, *Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters*. Upon completion of the test, it was determined that the medium burn rate, which is required to be less than 50% of the high burn rate, was too high, and thus did not satisfactorily meet the operational requirements of test standard. Upon review of the issues with involved with the unique design of the stove, which is not a pellet stove, the EPA approved an alternate test method for a second test, which was performed on September 5, 2017. Again, this test was conducted in accordance with ASTM E2779, except for the order of the burn rates. Instead of the standard, high, medium, low, sequence, the appliance was tested from low, to medium, then high. Approval of these alternate test methods and an in-depth discussion of the unique nature of this appliance can be found in the Myren Consulting Report located in Appendix D and E of this report.

Particulate sampling was conducted in accordance with ASTM E2515-11, *Standard Test Method for Determination of Particulate Matter Emissions Collected in a Dilution Tunnel*. No other methods were used and no deviations were made from the method.

SUMMARY OF RESULTS

A total of two test runs were performed on the 509-1 Optimum stove. The results from the two integrated test runs were arithmetically averaged to determine compliance with the 2020 particulate emission standard for wood heaters of 2.0 g/hr.

The average particulate emission rate was measured to be **1.5 g/hr**.

The overall thermal (HHV) efficiency was measured to be **78.8%**.

The average CO emissions was measured to be 1.59 g/hr.

1.3 - Summary Tables

	One-Hour Filter Emissions Rate (g/hr)	Integrated Total Emissions Rate (g/hr)
Run 1	1.50	1.89
Run 2	1.54	1.10
Average	1.52	1.50

Table 1 – Particulate Emissions

Table 2 – Efficiency and CO

Run #	Setting	Time (minutes)	Dry Burn Rate (kg/hr)	Heat Output Rate (BTU/hr)	Efficiency (%, HHV)	CO Emission (g/min)
1	High	60	2.32	33,114	78.3	1.18
1	Medium	120	2.90	42,099	79.6	1.61
1	Low	180	1.76	25,198	79.5	1.75
Integrated Total		360	2.23	32,183	79.0	1.58
2	High	60	1.98	27,834	77.2	1.97
2	Medium	120	1.55	22,368	79.3	1.70
2	Low	180	1.05	14,856	77.9	1.42
Integrated Total 360		360	1.37	19,573	78.5	1.59
Average of Integrated Totals: 78.8 1.						1.59

Average of Integrated Totals: 78.8

Table 3 – Test Facility Conditions

Run	Room Temperature (°F)		Barometric Pressure (in Hg)		Air Velocity (ft/min)	
	Before	After	Before	After	Before	After
1	62	73	28.17	28.17	<50	<50
2	66	75	28.52	28.47	<10	<10

Section 2 Laboratory Quality Assurance

2.1 - Quality Assurance/Quality Control

2.1 - Quality Assurance/Quality Control

OMNI follows the guidelines of ISO/IEC 17025, "General Requirements for the Competence of Testing and Calibration Laboratories," and the quality assurance/quality control (QA/QC) procedures found in *OMNI*'s Quality Assurance Manual.

OMNI's scope of accreditation includes, but is not limited to, the following:

- ANSI (American National Standards Institute) for certification of product to safety standards.
- To perform product safety testing by the International Accreditation Service, Inc. (formerly ICBO ES) under accreditation as a testing laboratory designated TL-130.
- To perform product safety testing as a "Certification Organization" by the Standards Council of Canada (SCC).
- Serving as a testing laboratory for the certification of wood heaters by the U.S. Environmental Protection Agency.

This report is issued within the scope of *OMNI*'s accreditation. Accreditation certificates are available upon request.

The manufacturing facilities and quality control system for the production of the 509-1 Optimum stove at 509 Fabrications, Inc. were evaluated to determine if sufficient to maintain conformance with OMNI's requirements for product certification. OMNI has concluded that the manufacturing facilities, processes, and quality control system are adequate to produce the appliance congruous with the standards and model codes to which it was evaluated.

This report shall not be reproduced, except in full, without the written approval of OMNI-Test Laboratories, Inc.

Appendix A

Labeling & Owner's Manual

DO NOT REMOVE THIS LABEL

509 Stoves Owner's Operation Manual Model 5091

UL 1482 STANDARD FOR SOLID-FUEL TYPE ROOM HEATERS- Edition 7 - Revision Date 2015/08/19 ULC S627 SPACE HEATERS FOR USE WITH SOLID FUELS- Edition 3 - Issue Date 2000/06/01 ASTM E1509 STANDARD SPECIFICATION FOR ROOM HEATERS, PELLET FUEL-BURNING TYPE - Issue Date 2012/10/01

OMNI PROJECT NUMBER: 0559WS001E Tested & O-TL Listed By O-TL C US OMNI-Test Laboratories, Inc.

MODEL 509-1

CAUTION!!! IMPORTANT OPERATING AND MAINTENANCE INSTRUCTIONS INCLUDED. DO NOT DISCARD.

LEAVE THIS MANUAL WITH THE HOMEOWNER.

Failure to follow the information in this manual may result in a fire; causing property damage, personal injury, or death. Read this booklet completely before installing or operating this appliance.

Do not modify this appliance in any way. Operation of the appliance in a manner inconsistent with this owner's manual will void the warranty.

This wood heater needs periodic inspection and repair for proper operation. It is against federal regulations to operate this wood heater in a manner inconsistent with operating instructions in this manual.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

Comply with all minimum clearances to combustibles as specified. Failure to comply may cause a house fire.

Certified to comply with 2020 particulate emission standards using densified fuel logs. This wood heater was found to have an average emissions rate of 1.9 g/hr using ASTM E2779

This wood heater has a manufacturer-set minimum low burn rate that must not be altered. It is against federal regulations to alter this setting or otherwise operate this wood heater in a manner inconsistent with operating instructions in this manual.

Glass and other surfaces are hot during operation and for some time after the fire has gone out. Supervise children around this appliance. Warn children and adults about high temperatures. High temperatures may ignite clothing or other flammable materials. Keep clothing, furniture, draperies and other combustible materials away.

DO NOT OPERATE WITH THE DOOR OPEN.

CALIFORNIA PROP 65 WARNING:

Use of this product may produce smoke which contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

IMPORTANT WARNINGS

CAUTION: Read this manual thoroughly before starting installation. For your safety, follow the installation, operation and maintenance instructions exactly without deviation. Failure to follow these instructions may result in a possible fire hazard and will void the warranty. If this appliance is not properly installed, a house fire may result. Contact local building or fire officials about requirements and installation inspection in your area.

- 1. DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE CONNECTED TO ANOTHER APPLIANCE.
- 2. Do not connect this appliance to air ducts or any air distribution system.
- 3. Do not install a flue damper in the exhaust venting system of this appliance.
- 4. Do not use class B venting intended for gas appliances as a chimney or connector pipe on this appliance.
- 5. The minimum clearances must be maintained for all combustible surfaces and materials including; furniture, carpet, drapes, clothing, wood, papers, etc. Do not store firewood next to or touching the appliance.
- 6. INSTALLATION DISCLAIMER This stoves exhaust system works with negative combustion chamber pressure and a slightly positive chimney pressure. Therefore, it is imperative that the exhaust system is gas tight and installed correctly. Since 509 Fabrications, Inc. has no control over the installation of your stove, 509 Fabrications, Inc. grants no warranty, implied or stated for the installation or maintenance of your stove, and assumes no responsibility for any consequential damage(s).
- 7. Burning any kind of fuel consumes oxygen. If outside air is not ducted to the appliance, ensure that there is an adequate source of fresh air available to the room where the appliance is installed. WE HIGHLY RECOMMEND USING OUTSIDE AIR SOURCE IN CASE OF APPLIANCE SHUT DOWN, NO SMOKE WILL FILL THE ROOM.
- 8. The stove will not operate using natural draft, nor without a power source for the blower and fuel feeding systems.
- 9. Never use gasoline, gasoline-type lantern fuel, kerosene, charcoal lighter fluid, or similar liquids to start or "freshen up" a fire in this heater. Keep all such liquids well away from the heater while it is in use.
- 10. CONTINUOUS OPERATION: When operated correctly, this appliance cannot be overfired. Continuous operation at a maximum burn can, however, shorten the life of the electrical components (blowers, motors, and electronic controls), and is not recommended. Typical approved operation would include running at the low to mid-range setting with occasional running on the maximum setting during the coldest periods of the winter. The blower speed control should be turned to HIGH when operating the stove on the high heat setting.
- 11. CAUTION: HOT IN OPERATION. An appliance hot enough to warm your home can severely burn anyone touching it. Keep children, clothing and furniture away. Contact may cause skin burns. Do not let children touch the appliance. Train them to stay a safe distance from the unit.
- 12. APPROVED FUEL: This appliance is designed specifically for densified wood fuels only. This appliance is NOT approved to burn cardboard, nut hulls, cherry pits, corn, etc. regardless if it is in log form. Failure to comply with this restriction will void all warranties and the safety listing of the stove. Consult with your authorized 509 Fabrications, Inc. dealer for more information on approved densified log fuels.
- 13. FLY ASH BUILD-UP: For all densified fuel heaters, the combustion gases will contain small particles of fly ash. This will vary due to the ash content of the fuel being burned. Over time, the fly ash will collect in the exhaust venting system and restrict the flow of the flue gases. The exhaust venting system should be inspected regularly and cleaned as necessary.
- 14. SOOT FORMATION Incomplete combustion, such as occurs during startup, shutdown, or incorrect operation of the room heater will lead to some soot formation which will collect in the exhaust venting system. A precautionary inspection on a regular basis is advisable to determine the necessity of cleaning. The exhaust venting system should be inspected regularly and cleaned as necessary.
- 15. DISPOSING OF ASHES: Any ashes removed from the stove must be deposited in a metal container with a tight-fitting lid. The closed container of ashes should be placed on a noncombustible floor or on the ground, well away from ail combustible materials, outside of the dwelling pending final disposal. If the ashes are disposed of by burial in soil or otherwise locally dispersed, they should be retained in the closed container until all cinders have been thoroughly cooled.
- 16. SAVE THESE INSTRUCTIONS.
- 17. See the listing label on the appliance or see Safety / Listing Label

509 Fabrication

Thank you for purchasing our 509 Fabrications, Inc Densified Fuel Log Stove.

This manual is designed to be simple. After reading through it if you have any questions, please feel free to email me anytime at <u>Dusty@509Fab.com <mailto:Dusty@509Fab.com></u>. I will respond to you as soon as possible.

Very Important: In the unlikely event if your electricity goes out, do not open the door or the lid on the top of the stove. The stove is designed to be air tight. Let the fire go out naturally.

Do not have the lid and the door open at the same time while the fire is burning. You will get smoke in the room. Only open one at a time.

Do not burn wood or any other substance in this stove except natural densified fuel logs with no additives. Burning these types of fuel will void your warranty and heavily damage the inner workings of the stove and exhaust motor.

This manual will cover:

- 1. Where and How to Install the stove including air intake and exhaust
- 2. How to Power the stove
- 3. Types of fuel you "Can and Cannot Burn"
- 4. How to Light the stove
- 5. How to Operate the stove and problem solving
- 6. How to Clean the stove
- 7. Maintenance
- 8. Clearance to combustibles
- 9. Limited Warranty
- 10. Important Warnings

How to Install the stove

The stove should be installed by a licensed stove company or a licensed HVAC Technician. Some states and counties require permits be obtained before you install your stove.

The outlet on the bottom combustion blower motor is 3" in diameter. Double wall pipe with stainless steel for the inner liner must be used in all installs. It is most commonly called Pellet Pipe. Your installer will know clearances for pipes through the walls and if you choose to run the pipe up instead of out the wall, you will more likely need to use 4" double wall pipe. The intake pipe fitting located on the bottom center of the stove is 3". A single wall pipe can be used for the intake air to the outside of the home.

Place the stove on an approved fire pad. Check with your installer in the state you are in to determine clearances on the size of pad. Some can be even with the base of the stove and others need to be one foot or more in size than the outer dimensions of the stove.

The stove is designed to be pushed back to within inches of the back wall and to be at least one foot from any sidewalls or any other surface. Check with your local permit inspector to verify your clearance from combustibles in your state. We have UL specifications on the stove for clearance to combustibles. (see #8)

HORIZONTAL INSTALL-EXHAUST Rear Wall or Alcove

VERTICAL INSTALL-EXHAUST Rear Wall or Alcove

Floor Protection

DuraVent - PelletVent Pro - Pipe

Building structure and Air intake and output, The following pages show requirments per UL testing of this stove 509 FAB suggest the DuraVent products and Specifactions (*See Attached Manual*) As an Industerial leader in Pellet Stove Pipe products

How to Power the stove

The stove has one plug-in, 3 prong 6 Ft. cord. Plug it into a 3-prong outlet. The stove should be plugged into its own outlet for safety and power surges.

The Fan and Igniter switches are on the left side of the stove on the base. The upper convection fan is plugged into to outlet under the stove.

The round knob is your first switch on the side of the stove and it is on the far left. This switch controls the upper air that will flow into the room. It has a variable speed and can be set to your needs.

The second switch is for your combustion blower. This switch will need to be turned to the up position and be on at all times that the stove is in operation.

The third switch is for your Hot Air Igniter. It is "ON" when the switch is located in the up position. The normal time for ignition is 1 to 3 minutes. It is very important to not leave this on after you are done lighting the stove. You could damage the igniter.

What you "Can and Cannot Burn" in your stove.

1. The stove is not designed to burn cord wood or wood round logs. DO NOT BURN WOOD!

2. The stove **is not** designed to burn any log that has additives in the log to help it burn. These types of logs will void your warranty if burned in your stove. The materials in these logs will also "clog up" the way the stove breathes to be able to operate efficiently and it will also plug up the fan blades on the motor that takes the exhaust out of the stove. Most of these logs that **are not** designed to be burned in your stove will have a wrapper on the log. Some examples of these types of logs are:

A. Duraflame

B. Java Log

C. Pine Mountain

D. Enviro Log

3. You can use the little fire starters that have wax additives in them to light your fire if needed. One per starting operation.

Log Fuel for the Stove.

Some logs over time will become "scaley" or rough feeling. This means that they have taken on moisture, just like a pellet will, over time, for a pellet stove. You cannot burn old pellets in a pellet stove but you can still burn your logs in your new stove, they just tend to create moisture inside the tube and water will be on the inside of the lid, so be careful opening the lid to keep the drops from spilling onto the top of the stove.

Be careful when selecting your new logs. They should be smooth and glossy felling to the touch, and have a slight dark color on the outside. Some older logs will start taking shape like a banana, they are not the ones to buy, they are too old to burn well. If you have logs left over from the previous season, it is best to mix them in with the new logs as you burn the stove, and use them to chop into kindling for starting the stove.

If a log sticks in the feed tube then you need to take the scraper tool provided and push it down the tube. Normally a couple of taps with the scraper tool will loosen the log and it will fall down to be burned in the fire.

How to Light the stove

DO NOT USE ANY TYPE OF FIRE STARTING LIQUIDS LIKE CHARCOAL LIGHTER FLUID, GAS, OR ANY OTHER COMBUSTIBLE FOR ANY REASON.

1. Open the door and make sure there is not a log left in the firebox. You can do this by looking at the bottom of the feed tube and down inside the square box. If you cannot clearly see in the fire box, slide the brick in the front over and look in with a flashlight. Slide the brick back into place when finished. If there is a log in there then follow this procedure

A. Move the log over to the right.

B. Drop in several little chunks of new log on the left-hand side, as many as can be fit in there without packing them in. Then proceed to # 8.

2. Close the door and latch it.

3. Open up the top lid on the stove

4. Slide the damper handle (located on the right side of the stove on the base) all the way to the front part of the base.

5. Break off some small ends of the logs using a hatchet or our log chipper found on our website. These pieces should be small chunks not full round discs from the logs. Drop about 3 cups of these pieces down the open lid.

6. Chop or break off 3 round discs about 1/2 inch thick from a log and drop those down the tube.

7. Grab a North Idaho Energy Log, a Presto Log, or a Home Fire Prest-Log or any natural style log and drop it down the tube. **Try and hang onto it as** you initially slide it down the tube

8. Close the top lid and latch it.

9. Open up the ball valve on the left side of the stove. In the closed position the handle will be alongside the stove. In the open position, it will be out 90 degrees from the stove.

10. Turn on the round knob to full speed

11. Turn on the Combustion blower motor, the second middle switch to the up position.

12. Turn the Igniter toggle switch, the 3rd switch to the far left on the base of the stove, to the up position.

13. When you see flames inside the stove, then slide the damper handle towards the back of the stove.

14. Turn off the igniter toggle switch, the 3rd switch to the far left on the base of the stove.

15. Turn the ball valve back to the closed position so it is in-line with the side of the stove.

16. Load the stove with extra logs.

17. Let the stove burn on high for at least 25 minutes before turning the damper down to low or medium burn. There is an indicator on the side of the base to determine your setting. On high you will go through a log every 2 hours or so. On low you will get from 4 to 6 hours out of a log. These figures are based on North Idaho Energy Logs. Other logs that are smaller will burn shorter periods. (Some logs will burn cooler as well in the amount of heat the stove produces, so find the logs that are right for you and your home and use them.) Different brands of logs are available in different parts of the country, just make sure they are a natural log with no additives.

How to Operate the stove and Problem Solving

The stove is very easy to operate as it does not have moving parts, and only the 2 fan motors. The biggest mistake to be made on this stove is to not let it burn for at least 25 minutes on high after lighting it. This is crucial to how the stove performs.

- 1. I can't get my fire to light with the igniter. Solutions: The igniter may be covered by a piece of fuel in the fire box. Slide the front brick over and look down in the fire box. Slide the log chunks over to the right of the left edge of the firebox. This will uncover the hole in the brick where the hot air is introduced to light the kindling in the firebox.
- 2. **My stove is not putting out any heat.** Inspect the fire through the door and make sure that the combustion blower is running and the upper convection blower is blowing air. If you can see a log in the firebox that is not glowing red or flaming, you may need to turn it up. Open up the damper by sliding the lever handle towards the rear of the stove. Let the stove burn for at least half an hour and then turn down to the setting you desire.
- 3. **My stove is not putting out any heat.** Inspect the fire through the door and make sure the combustion blower is running and the upper convection blower is blowing air. If you do not see glowing or burning in the firebox, then you may have a log stuck in the feed tube. Open up the top lid and look down the feed tube. If you can see a log in the feed tube, then follow this procedure: First, close the lid on top and then open the door. Feel for heat without touching anything on or inside the stove. If it is very hot when you open the door, then close the door and open the feed tube lid. Using a suitable tool, like a round rod, tap the log from the lid side down the feed tube. It will fall into the firebox. Open up the damper by sliding it towards the rear of the stove and let it burn on high for ½ hour and then reset to your desired setting.
- 4. **My stove is not putting out any heat.** Check the combustion blower and make sure it is on. It is powered "ON" by the middle toggle switch on the base of the stove. Make sure you have power to the plug where the stove is plugged in. You can do this by plugging another appliance into the wall and see if it comes on. If the appliance comes on you will need to call a repair company to replace the blower motor. (I have the blower motors available on my website and I will get you one out right away.)
- 5. **My stove is not blowing any heat from the convection blower out the front of the stove.** Make sure the blower is plugged in and the switch is turned on. Try unplugging the blower motor from the plug in on the backside of the stove under the base and plugging it into an extension cord. Then plug that cord directly into the wall. If the blower motor does not come on, then the switch or the blower motor is bad. Have a repair company come and fix it and order a blower off of our website.

How to Clean the stove

FOR YOUR SAFETY, IT IS IMPERATIVE TO MAKE SURE THE STOVE IS OFF AND COLD FOR ANY CLEANING PROCEDURE.

- 1. The glass is NORMALLY easy to clean. The best way to clean the glass is to take a razor blade with a built in safety handle and scrape the glass and then clean it with a product like "Simple Green" or glass cleaner and a paper towel.
- 2. The inside around the firebox needs to be vacuumed out about every 2 to 3 weeks or longer depending on how often you burn. Use an "ash vacuum" only to do this. It is what they are made for and then the dust will not blow in the house. The ash vacuums are available on my website.
- 3. Inspect the firebox by sliding the front brick to the side or removing the brick. Use a flash light to look in the firebox. If needed, vacuum the firebox out completely.
- 4. VERY IMPORTANT!! Every 3 to 4 days take the special wrench provided and using the pin end slide it into the hole on the rod sticking out by the tubes on the top front of the stove. Use wrench to pull the rod from front to back completely 5 or 6 times. This will clean off the radiant tubes so they transfer heat better.
- 5. **Every Time you clean the stove...** Use the special wrench provided to loosen the caps on each side of the stove. Unscrew them and use the ash vacuum to vacuum out those tubes. You can slide the end of the hose all the way in until it hits the other side of the stove. Look inside the tube with a light to make sure you have that area clean.
- 6. The body of the stove itself can be cleaned with glass cleaner, **ONLY WHEN COLD**.

Maintenance

1. Normal cleaning should be all that is necessary. Make sure to clean the radiant heat tubes with the scraper rod and wrench handle every day. This is a 30 second procedure.

One time a year the Lower Combustion motor should be removed and cleaned. The blades will have buildup on them from regular burning. This buildup needs to be removed and cleaned by a professional and the motor re-installed, making sure all nut fasteners and lock washers are used for re-install and tightened down securely. Do not over-tighten the nuts. If the gasket is damaged, it should be replaced to prevent air leaks. With the combustion motor removed, inspect your chimney pipe inspected for debris, and have it cleaned by a professional at this time if needed. When it is re-installed make sure that all connections are re-sealed and secure.

Brick replacement

The upper row of bricks are standard fire bricks except for the front facing brick. It has been cut down for air flow. The bricks can be obtained on the website or a home improvement store.

The inside row of bricks are identified and counted from the front facing brick that stands on its side. Front brick is #1 brick. #2 is to the left, brick #3 is in the back and brick #4 is the one on the right. These bricks are all special to their designated placement, and how they are cut and shaped. The bricks in the bottom of the firebox, if needing replaced, will all have to be replaced at the same time. They are available on the website.

Warranty

These stoves are all built by hand and Made in America by 509 Fabrications, Inc. Post Falls, ID. They have been made with the finest parts and materials available and metal thicknesses that will last a lifetime.

1. The stove body itself, minus the finish paint, is warranted for life by the original purchaser.

2. The convection blower is warranted for 1 year from date of purchase.

- 3. The Combustion blower motor is warranted for 1 year from date of purchase.
- 4. The glass is warranted for 1 year from date of purchase.
- 5. The fire bricks do not have any warranty.

509 Fabrications, Inc. Post Falls, ID. www.509Fab.com <http://www.509Fab.com> Dusty@509Fab.com <mailto:Dusty@509Fab.com> https://www.facebook.com/509Fab/

Appendix B

Manufacturer's Quality Assurance Plan (Confidential Business Information)

The following quality assurance plan has been developed to ensure all that all units within the model line are similar in all material respects that would affect emissions to the sample tested under this report, in accordance with § 60.533 (m).

Appendix C

Manufacturer Design Information (Confidential Business Information)

Appendix D

Myren Consulting Test Report Dated April 24, 2017

US EPA WOOD HEATER CERTIFICATION TEST REPORT

509 FABRICATORS, INC. OPTIMUM DENSIFIED FUEL LOG STOVE

APRIL 24, 2017

MYREN CONSULTING, INC.

OFFICE

512 WILLIAMS LAKE ROAD COLVILLE, WA 99114 PHONE 509-684-1154 FAX 509-684-3987

LABORATORY

501 C WILLIAMS LAKE ROAD COLVILLE, WA 99114 PHONE 509-685-9458 EMAIL myren.ben0gmail.com

Myren Consulting, Inc. 512 Williams Lake Road Colville, WA 99114 Office: (509) 684-1154 Lab: (509) 685-9458

email:myren.ben@gmail.com

509 FAB Optimum Sanchez Letter

24 April 2017

Dr. Rafael Sanchez, PhD. U.S.EPA Office of Enforcement and Compliance Assurance Office of Compliance William Jefferson Clinton Building, South Room 7419D 1200 Pennsylvania Ave., N.W. Washington, DC 20003

Dear Dr. Sanchez:

Myren Consulting, Inc. has prepared a certification test report for the Optimum densified fuel log stove and sent it to the manufacturer's certifying third party entity, Omni Test lab. As the test results indicate, the unit's emissions are below both the 2015 EPA standard of 4.5 g/h and 2020 EPA standard of 2.0 g/h.

Our report format has been revised to comply with EPA's specified format for pellet stoves and is organized in basically the same way as the previous pellet stove test reports Myren Consulting, Inc. has submitted to EPA. While the report is basically organized like the reports submitted under the old NSPS, some parts of the report have been reorganized/ revised to insure compliance with the rules in the new NSPS. Thus look at the relevant pages, e.g., Individual Test Run Page Index, in the Introduction Section to find the required information.

A comment is warranted here. This unit is the first unit that burns densified fuel logs to be certification tested. How it operates is very differently from both wood stoves and pellet stoves. It is truly an "outside the box hybrid" that combines operational features from both wood and pellet stoves, so the way it operates and was tested reflects this. If you or anyone else has any questions about the information or data in this test report, please contact me immediately.

Sincerely, Maple

Alben T. Myren Jr. President ATM/im

Confidential

The data and information in this test report is confidential, proprietary information and is not to be released to and/or discussed with any party who is not authorized by the manufacturer or the testing laboratory to receive such data.

Confidential ****

ij.

Report Certification

The sampling and analysis for the appliance described in this report was carried out under my direction and supervision.

Date: 1-pril 20, 2017 Signature: ____/-/ When the President Title:

I have reviewed all of the test data and test results found in this report and hereby certify that the test report is authentic and accurate. A = 11

2017 Date:

ynun dac Signature: Title: President

PELLET STOVE

TABLE OF CONTENTS

Introduction Title Page Confidentiality Statement Report Certification Table of Contents Testing Location and Personnel Information Test Report (Data) Page Number Index Individual Test Run Page Number Index Test Series Information and Discussion	Section (s) Introduction	Page(s) i ii ii iv v v vi-vii viii ix
Summary and Discussion of Results Integrated Test Results Particulate Sampling Train Performance Test Data Summary	Data Summary	1 1 2-4
Pellet Stove Aging Data	Aging	2
Individual Test Run (Raw Data) See Pellet Stove Test Run Page Index in the Introduction Section for a complete, sequential list of the data pages in the integrated test run.	Test Run	vari
Calibration Data See Test Report (Data) Page Number Index, Item 14, for a complete, sequential listing of the data in this section.	Cal Data	vari
Stove QC Pellet Stove Description	Stove QC	1
Blueprints Promotional (Sales) Brochure Laboratory verified blueprints	Blueprints	vari vari
Manual Manufacturer's Written Test Instructions Manufacturer's Owner's Manual	Manual	vari vari
Stora ge Storage Location/ Sealing Information Photo of Sealed Stove	Storage	1 1

Rev 0 12.15

plof1

TESTING LOCATION AND PERSONNELL INFORMATION

Unit Name: OPTIMUM DENSIFIED FUEL LOG STOVE

Manufacturer Name: 509 FABRICATORS, INC.

Manufacturer Address: 14823N. Peone Pines Drive Mead, WA 99201

Manufacturer Phone: 509 993 3767

Manufacturer Contact Person: Dusty Henderson email: Dusty@509fab.com

Observers & Affiliation: Dusty Henderson & Gary Henderson, both from 509 Fabricators

SUPERVISOR: Ben Myren

MYREN CONSULTING'S LAB TEAM: Ilse Myren, Ben Myren, Eric Schaefer

LAB LOCATION: Myren Consulting's lab in Colville, WA 99114

ELEVATION: ~ 1650 FEET

MYREN CONSULTING, INC.

LABORATORY 501-C WILLIAMS LAKE ROAD COLVILLE, WA 99114 509 685 9458 OFFICE 512 WILLIAMS LAKE ROAD COLVILLE, WA 99114 509 684 1154 email: <myren.ben@gmail.com>
WST6-Form5 Page 1 of 3 Rev: 12/15

Pellet Stove Test Report Page Number Index

Section Location 1. Integrated Test Results Data Summary Integrated Test Results p. 1 Summary Table of Other Data 2. Data Summary Data Summary Sheets p. 2-4 3. Wood Heater Description Stove OC Wood Heater Description p.1 (vari) 4. Manufacturer's Testing Instructions **Operators** Manual P. 1 of Section vari 5. Test Camber Installation Description Installation Description Introduction p. x 6. Pellet Stove Aging Documentation Aging p. 1-2 7. Pretest Burn Procedures Individual Test Runs Data Sheets #9,13 8. Pretest Facility Measurements Individual Test Runs Data Sheets #8, 16 9. Test Fuel Measurements A. Fuel Moisture Individual Test Runs Data Sheets #11 10. Heater Operation and Air Supply Settings Individual Test Run **Data Sheets** #9,13 11. Calibrations A Platform Scale 1. Semi Annual Cal Data **P.** 1 2. Pre and Post Test Individual Test Run Data Sheet #16 **B.Analytical Balance** 3. Semi Annual Cal Data P. 3 (Variable) 4. Pre Weighing Check Individual Test Run Data Sheet #4-4 C. Temperature 5. Thermometers Cal Data P. 5 6. Thermocouple Readout(s) a. Semi Annual Cal Data P. 6 b. Daily Check Individual Test Run Data Sheet #16 D. Dry Gas Meters a. Semi Annual Calibration Cal Data P. 7 (Variable # of pp.) b. Post Test Audits Cal Data (Variable # of pp.) c. Transfer Meter Calibration Cal Data (Variable # of pp.). E. Miscellaneous Test Equipment a. Anemometer Cal Data P. 11 b. Barometer Cal Data P. 11 c. Draft/ Static Pressure Gauge P. 11 / Cal Data

WST6-Form5 Page 1 of 3 Rev: 12/15

1.5

:

Pellet Stove Page Number Index

Section Location 1. Integrated Test Results Data Summary **Integrated Test Results** p. 1 Summary Table of Other Data 2. Data Summary Data Summary Sheets p. 2-4 Wood Heater Description 3. Stove OC Wood Heater Description p.1 (vari) 4. Manufacturer's Testing Instructions **Operators Manual** P. 1 of Section vari 5. Test Camber Installation Description Installation Description Introduction **p. x** 6. Pellet Stove Aging Documentation Aging p. 1-2 7. Pretest Burn Procedures Individual Test Runs Data Sheets #9,13 8. Pretest Facility Measurements Individual Test Runs Data Sheets #8, 16 9. Test Fuel Measurements A. Fuel Moisture Individual Test Runs Data Sheets #11 10. Heater Operation and Air Supply Settings Individual Test Run Data Sheets #9,13 11. Calibrations A Platform Scale 1. Semi Annual Cal Data P. 1 2. Pre and Post Test Individual Test Run Data Sheet #16 **B.Analytical Balance** 3. Semi Annual Cal Data P. 3 (Variable) 4. Pre Weighing Check Individual Test Run Data Sheet #4-4 C. Temperature 5. Thermometers Cal Data P. 5 6. Thermocouple Readout(s) a. Semi Annual Cal Data P. 6 b. Daily Check Individual Test Run Data Sheet #16 D. Dry Gas Meters a. Semi Annual Calibration Cal Data P. 7 (Variable # of pp.) b. Post Test Audits Cal Data (Variable # of pp.) c. Transfer Meter Calibration Cal Data (Variable # of pp.). E. Miscellaneous Test Equipment a. Anemometer Cal Data P. 11 b. Barometer Cal Data P. 11 c. Draft/ Static Pressure Gauge Cal Data P. 11

WST6-Form5 Page 2 of 2 Rev: 12/15

;

L

. -

d. Humidity Gauge Calibration (Sling Psychrometer)	Cal Data	P. 13
F. Combustion Gas (CO ₂ , O ₂ , CO) Train Response Check	Cal Data	P 20
G. CO_2 Analyzer		
1. Calibration	Cal Data	P 22
2. Pre and Post Test Zero/Span	Individual Test Run	Data Sheet #15-3
B. CO Analyzer		Dudi Sheet #15-5
1. Calibration	Cal Data	P 24
2. Pre and Post Test Zero/Span	Individual Test Run	Data Sheet #15 1
C. Calibration Gas Certificates of Analysis		Data block #15-1
15. Quality Checks		
A. Leak Checks		
1. Particulate Sampling Train	Individual Test Runs	P1 of Data Shoot #2
2. Combustion Gas (CO ₂ , O ₂ , CO) (CEM) Train	Individual Test Runs	Data Sheet #16
B. Proportional Checks	Individual Test Runs	Table 1
16. Sample Calculations		
A. Dry Burn Rate	Individual Test Runs	Data Sheet # 8: Computer Printout
17. Raw Test Data	Individual Test Runs	Data Sheets #1-16
18. Analytical Data		
A. Filter and Beaker Tares	Individual Test Runs	Data Sheets #4-1 4-2
B. Solvent Blanks	Individual Test Runs	Data Sheets $#4_3 5$
C. Particulate Catches		
1. Gross	Individual Test Runs	Data Sheet #5
2. Blanks	Individual Test Runs	Data Sheet #5
3. Net	Individual Test Runs	Data Sheet #5
D. Constant Weight Weighings		
1. Tares	Individual Test Runs	Data Sheets # 4-1 4-2
2. Finals	Individual Test Runs	Data Sheet $\#4-3$
3. Analytical Balance QC Checks	Individual Test Runs	Data Sheet #4-4 (Variable pp.)
		· · · · · · · · · · · · · · · · · · ·

.

....

Forms Introduction P. ix Page 1 of 1

ASTM E2515/ EPA M5G-1 Individual Test Run Page Index (Pellet Stove)

The data sheets in the individual test runs are organized in the following sequence.

Filters photo 1 CSA B415.1-10 "Report" computer spreadsheet printout Variable CSA B415.1-10 "Data Input" computer spreadsheet printout Variable Dilution Tunnel Traverse data 1 Dilution Tunnel Gas Velocity and Volumetric Flow Rate Calculations 1 Train 1 Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printout Variable Train 1 0-60 Minute Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printout Variable Train 1 0-60 Minute Particulate Sampling data (Meter Box data) Variable Train 1 60 Minute Plus Particulate Sampling data (Meter Box data) Variable Filter Constant Tare Weight data Variable Variable Variable Variable Variable
CSA B415.1-10 "Report" computer spreadsheet printoutVariableCSA B415.1-10 "Data Input" computer spreadsheet printoutVariableDilution Tunnel Traverse data1Dilution Tunnel Gas Velocity and Volumetric Flow Rate Calculations1Train 1 Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printoutVariableTrain 1 0-60 Minute Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printoutVariableTrain 1 0-60 Minute Particulate Sampling data (Meter Box data)VariableTrain 1 60 Minute Plus Particulate Sampling data (Meter Box data)VariableFilter Constant Tare Weight dataVariableBeaker Constant Tare Weight dataVariableVariableVariableVariableVariable
CSA B415.1-10 "Data Input" computer spreadsheet printoutVariableDilution Tunnel Traverse data1Dilution Tunnel Gas Velocity and Volumetric Flow Rate Calculations1Train 1 Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printout1Train 1 0-60 Minute Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printoutVariableTrain 1 0-60 Minute Particulate Sampling data (Meter Box data)VariableTrain 1 60 Minute Plus Particulate Sampling data (Meter Box data)VariableFilter Constant Tare Weight dataVariableBeaker Constant Tare Weight dataVariableVariableVariableVariableVariable
Dilution Tunnel Traverse data1Dilution Tunnel Gas Velocity and Volumetric Flow Rate Calculations1Train 1 Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printout1Train 1 0-60 Minute Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printoutVariableTrain 1 0-60 Minute Particulate Sampling data (Meter Box data)VariableTrain 1 60 Minute Plus Particulate Sampling data (Meter Box data)VariableFilter Constant Tare Weight dataVariableBeaker Constant Tare Weight dataVariableVariableVariable
Dilution Tunnel Gas Velocity and Volumetric Flow Rate Calculations1Train 1 Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printoutVariableTrain 1 0-60 Minute Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printoutVariableTrain 1 0-60 Minute Particulate Sampling data (Meter Box data)VariableTrain 1 60 Minute Plus Particulate Sampling data (Meter Box data)VariableFilter Constant Tare Weight dataVariableBeaker Constant Tare Weight dataVariableVariableVariable
Train 1 Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printoutVariableTrain 1 0-60 Minute Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printoutVariableTrain 1 0-60 Minute Particulate Sampling data (Meter Box data)VariableTrain 1 60 Minute Plus Particulate Sampling data (Meter Box data)VariableFilter Constant Tare Weight dataVariableBeaker Constant Tare Weight dataVariableVariableVariable
Train 1 0-60 Minute Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printoutVariableTrain 1 0-60 Minute Particulate Sampling data (Meter Box data)VariableTrain 1 60 Minute Plus Particulate Sampling data (Meter Box data)VariableFilter Constant Tare Weight dataVariableBeaker Constant Tare Weight dataVariableVariableVariable
Train 1 0-60 Minute Particulate Sampling data (Meter Box data) Variable Train 1 60 Minute Plus Particulate Sampling data (Meter Box data) Variable Filter Constant Tare Weight data Variable Beaker Constant Tare Weight data Variable
Train 1 60 Minute Plus Particulate Sampling data (Meter Box data) Variable Filter Constant Tare Weight data Variable Beaker Constant Tare Weight data Variable
Filter Constant Tare Weight data Variable Variab
Beaker Constant Tare Weight data Variable Variable
Variable
Acetone Blank Beaker Constant Final Weight data
Train 1 0-60 Minute PM Sample Constant Final Weight data
Train 1 60 Minute Plus Constant Final Weight data
Train 1 Particulate Matter Catch Calculations
Train 2 Emission Rate/ Dilution Tunnel Calculations computer spreadsheet printout
Train 2 Particulate Sampling data (Meter Box data)
Train 2 PM Sample Constant Final Weight data
Train 2 Particulate Matter Catch Calculations
Train 3 Room Blank Sampling Rate and PM Concentration Calculations computer spreadsheet printout
Train 3 Particulate Sampling data (Meter Box data)
Train 3 PM Sample Constant Final Weight data
Train 3 Particulate Matter Catch Calculations
Analytical Balance QA/ QC data
Woodstove Data Sheet #8 Miscellaneous data
Woodstove Data Sheet #9 Pellet Stove Operating data
Woodstove Data Sheet #10 Preburn and Fuel Load Moisture Determination data
Woodstove Data Sheet #11 ASTM E2780 Fuel Load Calculations
Woodstove Data Sheet #13 Pre Burn Data
Woodstove Data Sheet #14 Burn Rate, Flue Gas and Temperature Data
Woodstove Data Sheet #15-1 CO ₂ Pre and Post Test Zero/Span Audits
Woodstove Data Sheet #15-3 CO Pre and Post Test Zero/Span Audits
Woodstove Data Sheet #16 Quality Checks

Rev 12/15

TEST SERIES INFORMATION AND DISCUSSION

MODEL LINE: OPTIMUM DENSIFIED FUEL LOG STOVE MODEL 1

TEST UNIT: OPTIMUM DENSIFIED FUEL LOG STOVE MODEL 1

Manufacturer: 509 FABRICATORS INC.

Date Received: 12/28/16

Date(s) Aged: 12/27/2016 - 1/1/2017. See AGING Section

Test Date(s): 1/9/2017

PM Sampling Method(s): ASTM E2515 using 4" fiber glass filters (EPA M5G-1)

Operating and Fueling Protocol: EPA M28R, ASTM E2779 Revised. See letters to EPA (Rafael Sanchez, OEC, D.C. and Mike Toney, OAQPS, RTP) and their email responses.

Number of Test Runs: 1

The OPTIMUM Densified Fuel Log stove manufactured by 509 FABRICATORS, INC. located in Mead, WA was tested by Myren Consulting, Inc. using the Environmental Protection Agency's (EPA) Test Method 28R, "Certification and Auditing of Wood Heaters", ASTM E2515-11, "Standard Test Method for Determination of Particulate Emissions Collected in a Dilution Tunnel" and ASTM E2779-10, Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters". (See the Federal Register/ Vol.80, No.50/ Monday, March 16, 2015. [pp.13672-13753]). On March 28, 2015 Myren Consulting, Inc. requested approval from EPA to use four-inch filters when conducting all PM emission certification tests and received the approval to do so on April 7, 2015. Thus the PM sampling and PM sample processing procedures used during the certification tests found in this test report are what are found in EPA M5G-1 in the previous NSPS. (See the Federal Register/ Vol.53, No.38/ Friday, February 26, 1988/ pp.5860-54926, especially in Method 5G in Appendix A on pp. 5884-5892.) The particulate matter (PM) emission data was calculated as specified in the Wood Heater New Source Performance Standard (NSPS) dated March 16, 2015. The percent overall efficiency (%OE) for the overall test run and

х

for each test segment (High, Medium and Low) was calculated using the %OE algorithm found in CSA's B415.1-10.

All events and information pertinent to the test data are recorded on the data sheets for the test run, particularly on pp. 13 and 14.

Any deviations made or noted from the promulgated methods other than those that were accepted and certified by EPA during the laboratory accreditation process are listed and discussed below. The OPTIMUM densified fuel log stove was tested at Myren Consulting's lab in Colville, WA using Myren Consulting laboratory's lab accreditation. A copy of the letter from EPA (Johnson) granting Myren Consulting, Inc. accreditation under the 2015 NSPS and a copy of Myren Consulting's new Laboratory Accreditation Certificate (#2) are included in the following pages.

A brief note about how the four-inch (EPA M5G-1) particulate samples were processed is necessary to help the reviewer understand the net catch values. First, filters are weighed in pairs to reduce weighing errors. Second, experience has shown that the small portions of the filters that are left on the frits (filter supports) in the M5G-1 filter housing apparatus after the filters are removed are full of static electricity. When these small portions are removed to a plastic petri dish, they quickly adhere to the petri dish. Because trying to recapture these small pieces of filter material during weighing causes them to disintegrate into smaller and smaller pieces, which makes obtaining accurate catch weights difficult, it was decided to place this filter material in with the particulate captured with the acetone wash, where it shows up as catch. Some of the filter material was already following this Thus, there may be negative filter catch weights that pathway. are used during the particulate emission rate calculation process. However, the filter material lost off the filters is accounted for in the acetone wash catch.

ASTM E2779-10 Equation 1 calls for a dry moisture content for the test fuel used during testing. There is no way to measure the moisture content of pellets on a dry basis. Instead one can determine the wet basis moisture content by drying a sample. This is what done and the data for this is on Data Sheet 11 in the test run. Once the wet basis moisture content is known, it is then possible to calculate the fuel burnt on a dry basis, which again is what was done. The dry burn rate (DBR) determination is the same. The revised procedures and equations used to determine the actual DBR are to be found on the page after Data Sheet 11 in the Section titled TEST RUN.

The following pages contain: (1.) A discussion of test results. (2.) A diagram showing the height of the appliance and chimney used during testing (4" ICC EXCEL Pellet Pipe) and the location of the sampling ports in the chimney. (3.) A diagram of the EPA 6" diameter dilution tunnel used by Myren Consulting during EPA Certification testing, (4.) 3 pages with photos showing the front, back and right and left sides of the test unit. Note that the back photo shows how the venting system was attached to the stove along with the static pressure probe and the stack temperature at 1 foot. And there is also a full page photo of the testing installation configuration, i.e., the stove with attached flue pipe venting into the dilution tunnel hood, (5.) photos of an North Idaho Energy log, the densified fuel log that was used during testing, (6.) A copy of the letter from EPA granting Myren Consulting, Inc accreditation under the 2015 NSPS, (7.) a copy of the new EPA Laboratory Accreditation Certificates (#2) for Myren Consulting's Colville lab, (8.) a copy of the 30 day advance certification test notification sent to EPA for the week the unit was tested, (9.) three pages with information that is pertinent to the test run and (10.) copies of the following information:

- (1.) A memo dated 26 November 2013 sent to Dr. Sanchez at EPA that initiated the development of a testing protocol for a stove that burns densified fuel logs.
- (2.) A memo dated 30 April 2016 sent to Mike Toney and Stef Johnson at EPA (OAQPS, RTP) that provided additional information about the stove, the fuel it burns and what the test protocol might be.
- (3.) A letter dated 6 December 2016 sent to Mike Toney (EPA, OAQPS, RTP) about whether (or not) Myren Consulting, Inc. could test the unit.
- (4.) Emails from Toney and Sanchez granting Myren consulting, Inc. approval to test the unit with the agreed upon protocol, which is basically a variant of ASTM E 2779 except that fuel had to be added during the test run and the primary air control (PAC) was adjusted manually to change the dry burn rate (DBR).

Note: You can see by the photos that the unit has undergone substantial revision since development began. The manufacturer's personnel listed in the memo addresses also reflect the ownership changes (3X) that have occurred during the product development process.

DISCUSSION:

- (1.) The test series was done at Myren Consulting's lab in Colville, WA.
- (2.) The test series required 1 test run.
- (3.) Because the whole testing format for pellet stoves has changed in the new NSPS, there are several revisions to the report format. Specifically the following changes have been made:
 - a. The first page in the Data Summary section is titled Summary Results which reports the test data in the format requested by EPA.
 - b. Because the pellet stove test is now an integrated sample test, there is no weighted average calculations because collecting the integrated sample "automatically" generates an "integrated weighted average". Instead of the pages used to calculate a weighted average, there is now a single page titled Integrated Average Test Results, which reports the PM emission rate (g/h and lbs./MM Btu output), the overall efficiency (%OE) (HHV and LHV) and CO (g/h and g/lb. of dry fuel) for the unit.
 - c. A new page has been added to the Data Summary Section (p. 3) which summarizes the PM Sampling Train Performance information and addresses the Dual Train Comparison criteria found in ASTM E2515 Section 11.7. The average emission rate calculated and reported on this new page using the data from the 2 PM sampling trains is then also reported on the page titled Integrated Test Results. Also reported on this page are the performance data for the "Room Blank" train and the PM emission rate (g/h) and dry burn rate (DBR) (kg/h) data for the 0-60 minute filter set from Train 1.

d. Section 60.534(d) requires that filter sets be changed (switched) at 1 h into a test run on one of the PM sampling trains. This was done on Train 1 during the test run. Thus there are additional data sheets in each test run for the 2 filter sets used in Train 1 to accomplish this requirement. As noted above, the PM emission rate for the first hour is reported on the computer spreadsheet for that PM sample and again in the Data Summary section itself.

d. ASTM E2515 requires 2 PM sampling trains and a third "Room Blank" train. That means there are also additional data sheets for Trains 2 and 3 in the section with the Raw Data sheets for the test run and in the Cal Data Section where the calibration and post test audit data is presented for the equipment used in all 3 of these trains.

Please look at the Table of Contents (p. iv), the Pellet Stove Test Report Page Number Index (pp. vi-vii) and the Individual Test Run Page Index (p. ix) to find any pages of interest. Or call Myren Consulting, Inc. at either 509 685 9458 (Lab)or 509 684 1154 (Office) if further assistance is needed.

Í.

FRONT VIEW

LEFT SIDE

RIGHT SIDE

NORTH IDAHO ENERGY LOG ~ 8.0 LBS./ LOG

CROSS SECTION OF NORTH IDAHO ENERGY LOG

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY RESEARCH TRIANGLE PARK, NC 27711

in de

NOV 1 2 2015

OFFICE OF AIR QUALITY PLANNING AND STANDARDS

Ben Myren Myren Consulting, Inc. 512 Williams Lake Road Coleville, WA 99114

Dear Mr. Myren:

Thank you for your recent inquiry regarding the United States Environmental Protection Agency (EPA) wood heater laboratory accreditation program. The review of your reaccreditation letter that you submitted November 10, 2015 is complete and acceptable. Enclosed is your current certificate of accreditation. Myren Consulting, Inc. is accredited under Subpart AAA 40 CFR Standards of Performance for New Residential Wood Heaters Sections (60.534, 60.535) and Subpart QQQQ 40 CFR Standards of Performance for New Residential Hydronic Heaters and Forced-Air Furnaces Sections (60.5476, 60.5477). Please follow the requirements for EPA Test Method 28R Certification and Auditing of Wood Heaters in Appendix A-8 to Part 60-Test Methods 26 through 30B. This approval expires on March 16, 2018, unless renewed by Myren Consulting, Inc.

As a condition of your lab accreditation, Myren Consulting, Inc. must abide by the following provisions: (i) Agree to participate biennially in an independently operated proficiency testing program with no direct ties to the laboratories participating;

(ii) Agree to allow the EPA, regulatory agencies and certifying bodies access to observe certification testing;

(iii) Agree to comply with calibration, reporting and recordkeeping requirements that affect testing laboratories; and

(iv) Agree to perform a compliance audit test at the manufacturer's expense at the testing cost normally charged to such manufacturer if the laboratory is selected by the EPA to conduct a compliance audit test of the manufacturer's model line;

(v) Have no conflict of interest and receive no financial benefit from the outcome of certification testing conducted pursuant to §60.5475;

(vi) Agree to not perform initial certification tests on any models manufactured by a manufacturer for which the laboratory has conducted research and development design services within the last 5 years; (vii) Agree to seal any wood heater on which it performed certification tests, immediately upon completion or suspension of certification testing, by using a laboratory-specific seal.

(viii) Agree to immediately notify the EPA of any suspended tests through email and in writing, giving the date suspended, the reason(s) why, and the projected date for restarting.

Emission test reports should be submitted to EPA's Office of Enforcement and Compliance Assurance, at one of the following addresses:

<u>U.S. Postal Service</u> U.S. EPA Office of Enforcement and Compliance Assurance, Office of Compliance William Jefferson Clinton Building, South Mail Code 2227A 1200 Pennsylvania Ave, NW Washington, DC 20003

Attn: Wood heater Certification Lead

Private Courier

U.S. EPA

Office of Enforcement and Compliance Assurance, Office of Compliance William Jefferson Clinton Building, South Room 7419D 1200 Pennsylvania Ave, NW Washington, DC 20003

Attn: Woodheater Certification Lead

I would like to thank you for your cooperation in the wood heater certification program.

Sincerely,

Steffan Johnson Measurement Technology Group

Enclosure (2)

cc.

Julius Banks, OECA (2227A) Rafael Sanchez, OECA (2227A) Adam Baumgart-Getz, OID (C304-05) Amanda Aldridge, OID (C304-05) David Cole, OID (C304-05)

CERTIFICATE OF ACCREDITATION

This certifies that:

Myren Consulting, Inc

Has satisfied the requirements for laboratory accreditation for the certification of wood heaters pursuant to subpart AAA of 40 CFR Part 60, New Source Performance Standards For Residential Wood Heaters and subpart QQQQ of 40 CFR Part 60, Standards of Performance for New Hydronic Heaters and Forced <u>Air Furnaces</u>.

November 12, 2015 - March 16, 2018 EFFECTIVE DATE

MÉASÚRÉMENT TECHNOLOGY GROUP GROUP LEADER

ġ

Methods 28R, 28 WHH, 28 WHH-PTS, All Methods listed in Sections 60.534 and 60.5476 **METHODS**

CERTIFICATE NUMBER

2

Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

 Office:
 (509)684-1154
 Lab:
 (509)685-9458

 Fax:
 (509)684-3987
 email:myren.ben@gmail.com

DATE: 25 November 2016

TO: Dr. Rafael Sanchez, PhD., EPA

CC: Dusty Henderson, 509 Fabricators Dan Shoman, PFS; Wayne Terpstra, PFS

FROM: Ben Myren

RE: Wood Heater 30 Day Advance Certification Test Notification

Section 60.534(e)(1) of the Wood Heater NSPS requires that EPA be notified at least 30 days in advance of the start or resumption of EPA Certification Testing for each specific model line. To comply with the above requirement, Myren Consulting, Inc. hereby notifies EPA that Myren Consulting, Inc., 512 Williams Lake Road, Colville, WA 99114 plans to start an EPA Certification Test series on the unit identified below.

UNIT: 509 FABRICATORS DENSIFIED FUEL LOG STOVE

Manufactured by:

509 FABRICATORS	Contact Person: Dusty Henderson
14821 N. Peone Pines Dr.	Phone: 509 993 3767
Mead, WA 99201	F:
	email: unlimitedpower59@yahoo.com

Starting sometime the week beginning on Monday, January 9, 2017.

The testing will be conducted at:

Myren Consulting, Inc.	Contact Person: Ben Myren
512 Williams Lake Road	Lab: 509 685 9458 F: 509 684 3987
Colville, WA 99114	email: myren.ben@gmail.com

The 3rd Party Certifying Entity will be

PFS	Contac	t Person;	Dan Shoman
1420 Lizzy Court	₽: 975	489 6017	F: 817 742 0007
Keller, TX 76248	email:	dshoman@p	fscorporation.com

If you have any questions about this notification, contact me immediately.

NOTE: The Densified Fuel Log stove is a new appliance type and testing details based upon ASTM E2779 are still being worked out with the Emission Measurement Branch of OAQPS in RTP.

Room Blank Probe Location

Myren Consulting Inc.

Unit:	Optimum
Date:	1/8/17
Tech:	ATM F55
Run:	EPAI

The room blank probe inlet was located 41'4''

from the bottom of the dilution tunnel hood.

N	MAREN CONSULTING, INC.
Unit:	Uptimum
Date:	1/8/17
Tech:	NOM ESS
	Rev 0 5.21.2016

INDUCED DRAFT CHECK

Depending upon the unit being tested, once the appliance was installed on the platform scale or in the test facility and the tunnel flow was determined for 100% smoke capture (See ASTN E 2515, Section 9.2.4), an induced draft check was performed as per EPA M28/ M28R Section 4.1.2/ ASTM E2515 Section 9.2.3 to verify that the dilution tunnel was not inducing a draft of >0.005" H₂O on the unit.

The static pressure probe located ≤ 1.0 foot above the flue collar (EPA M28/ M28R Section 6.2.3/ ASTM E2515 Section 9.2.3) that was connected to a 0.05-0-0.25 inch H₂O manometer was used to make the induced draft determination. The reading resolution on the 0.05-0-0.25 inch H₂O manometer is 0.001 inch H₂O, which is greater than the 0.002 inch H₂O resolution stipulated in EPA M28/ M28R Section 3.9 for the instruments used to measure static pressure.

The results of the induced draft check are as follows:

Flue Damper:

n/a

Door	Open:	Primary	Air	Control	Closed [*] :	,000	"	H ₂ O
		Primary	Air	Control	Open:	.000	, "	H₂O
Door	Closed	: Prima:	ry Ai	ir Contro	l Closed [*] :	.000	."	H ₂ O

Primary Air Control Open: .000 "H₂O

*Note: In units with a "stop" in the primary air control, the primary air "closed" induced draft check was conducted with the primary air control set at the "stop". In units that had no "stop", the induced draft check was conducted with the primary air control either fully closed or set so that the amount the primary air orifice was open was at the minimum amount possible. MYREN CONSULTING, INC. ASTM E2515 DATA SHEET # 5-3 PAGE 1 OF 1

DETERMINATION OF TUNNEL FLOW FOR 100% SMOKE CAPTURE Rev 2 - 10/2/16 UNIT: <u>Optimum</u> DATE: 1/8/17 TECHNICIAN(S): <u>AIM</u> ESS Ap @ 100% Smoke Capture: .030^{*} Tunnel Temperature: 117 °F = 677 °A BP: 28.71 in. Hg Tunnel Diameter: (6" tunnel = 0.1963 ft², 12" tunnel = 0.7854 ft²)

Gas Velocity in the Center of the Dilution Tunnel (Vscent) (EPA M2 EQN 2-9, ASTM E 2515-07 EQN 7)

Note: Number in { } under blank lines denotes number of decimals to be used. If a blank calls for an answer already calculated, use the number of decimals previously specified for that answer.

Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

Office:	(509)684-1154	Lab:	(509) 685-9458
Fax:	(509) 684-3987	email: myren.b	en@gmail.com

DATE: 26 November 2013

TO: Dr. Rafael Sanchez, PhD., EPA

CC: Reyn Smith, Presto Log Stove; Mike Toney, EPA; Gil Wood EPA

FROM: Ben Myren

RE: Certification Testing Protocol for a Densified Fuel Log Stove

What follows is a proposed EPA Certification Testing protocol for an appliance that burns densified fuel logs (Presto Logs).

Densified Fuel Logs:

Densified fuel logs are nothing more than big pellets with a diameter of 5 inches, a (nominal) length of 12 inches and an average weight of 7-8 lbs. These numbers vary from manufacturer to manufacturer. The advertised moisture content is 2.0%, probably taken immediately after production. We have checked the moisture in 1 log and found it to be 6.7%. The increase in moisture content is probably due to the log being exposed to ambient air and moisture after production.

Densified Fuel Log Burner:

Unlike most pellet stoves, there are no electronic controls on the unit other than two on/off toggle switches which turn the combustion and convection air fans on and off. The stove has an angled feed tube that holds at least 3 logs that are gravity fed into the burn area in the firebox. Like a woodstove the burn rate is controlled by the amount of combustion air entering the unit. The combustion air is pulled through the unit by a 178 cfm fan located downstream of the firebox. The amount of combustion air is controlled by a "butterfly damper" in the combustion air inlet and is adjusted by a control rod on the lower right front of the unit. The exhaust gasses leave the firebox through a slot in the top of the burn chamber into a heat exchange chamber that has 20-27" long 1.0"ID tubes with convection air from a 273 cfm fan flowing through them.

2 photos of the unit are attached.

Test Protocol:

We propose the following set up and procedures for testing the unit:

- 1. Use 14-16' of 4" pellet vent as the stack.
- 2. Eliminate the use of the 5 surface thermocouples used to calculate "Delta T". The unit operates in basically a "steady state" mode, so the one hour of preburn before each test should insure a fairly uniform temperature profile start to finish.
- 3. Use the procedures specified in EPA M28, Section 6.7. This includes a 1 one hour preburn and a 2 hour PM emissions test for each possible burn category. Tests will be run with the air control at:
 - A. The maximum possible air setting
 - B. The minimum possible air setting
 - C. With the air control set to produce dry burn rates in any of the required burn categories between what is produced by A. and B.

Note: At present the maximum dry burn rate (DBR) is about 2.35 kg/hr and the minimum DBR is about 1.4 kg/hr. The manufacturer hopes to reduce the minimum DBR to something below 1.25 kg/hr, hopefully to about 1.0 kg/hr. So depending upon what they can accomplish, tests may be needed in all 4 burn categories.

Because the fuel is a densified fuel log, a two hour test should produce viable, accurate test results. However there is one issue that needs to be addressed, that being

the amount of sample catch. One of the most recent 2 hour R&D runs using EPA M5G-1 to collect a PM sample had a front filter catch of 2.0 mg. The back half filter catch was 0 and the acetone wash catch was about 0.2mg with an average sampling rate of 0.4913 cfm. Using ASTM E 2515 (EPA M5G-3) as an alternative not an option because the nominal sampling rate of 0.15 cfm is about 1/3 of the sampling rate used in M5G-1 tests, so the catch would be about 1/3 of the M&G-1 catch, or roughly 0.7 mg. The constant weight tolerance criteria of ± 0.5 mg and ± 0.2 mg for M5G-1 and ASTM E 2515 respectively yields a potential error of ±22.7% for M5G-1 ((1.7 - 2.2)/2.2) and 28.5% for ASTM E2515 ((.5-.7)/.7). To try to reduce this error as much as possible, we propose to increase the sampling rate to at least 1 cfm - as much as possible (1.4 cfm ?) without exceeding the filter face velocity criteria set of 30 ft/min set forth in M5G section 7.2.1. (See attached memo about face velocities and sampling flows.)

We look forward to your reply. Let me know if you have any questions.

Have a Happy Thanksgiving!

Regards, Ben

Myren Consulting, Inc. 512 Williams Lake Road Colville, WA 99114 Office: (509) 684-1154 Fax: (509) 684-3987 email: myren.ben@gmail.com

DATE: 30 April 2016

TO: Mike Toney, EPA; Stef Johnson, EPA

CC: Adam Baumgart-Getz, EPA; Amanda Aldridge, EPA, Rafael Sanchez, EPA; David Cole, EPA, Larry Brockman, EPA; Dusty Henderson, 509 Fabricators

FROM: Ben Myren

RE: DENSIFIED FUEL LOG WOOD HEATER

I have been working with a client that is developing a wood heater that burns densified fuel logs, a.k.a., Presto logs. The photos below show the most recent prototype burning in my lab on 4/26/16 and some densified fuel logs.

Note the 2 different sizes (diameters). The larger diameter log is a North Idaho Energy Log and the smaller diameter log is an actual Presto log.

This is a close up of a North Idaho Energy Log. It weighs about 8 lbs.

This is a close up of the end of a North Idaho Energy Log. You can see the compacted wood particles.

STOVE OPERATION:

The fuel is gravity fed into the combustion chamber via a 6" ID vertical feed tube that holds 3.5 logs. You can see part of the feed tube in the photo of the stove. The part of the feed tube inside the stove is glowing red hot. The dry burn rate (DBR) is controlled by the combustion air fed into the burn chamber. The unit has 4 combustion air settings: High, Medium, Low and Off. When set on Off, no air enters the firebox. The unit has 2 fans, one for combustion air and the other for convection air.

Since densified fuel logs are nothing more than a "big pellet", I am suggesting that we use ASTM E2779 as the basis for testing the unit. We could easily fill up the tube with logs and run an integrated 6 h test with 1 h on High, 2 h on Medium and 3 h on Low to determine PM emissions and use CSA B415.1-10 to determine the overall efficiency (%OE).

My intent with this letter is to start a dialogue with EPA with the end result of the dialogue being an agreed upon alternative testing protocol that can be used to test the stove so that the unit can be certified. I am certain that EPA will have a number of questions about this unit, but at least this memo should get the process started.

I look forward to your comments, questions and answers.

Regards,

Ben Myren President Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

Office:(509)684-1154Lab:(509)685-9458Fax:(509)684-3987email: myren.ben@gmail.com

Date: 6 December 2016

To: Mike Toney, EPA

CC: Adam Baumgart-Getz, EPA; Amanda Aldridge, EPA; David Cole, EPA; Rafael Sanchez, EPA, Steffan Johnson, EPA; Dusty Henderson, 509 Fabricators

From: Ben Myren

RE: Section 60.535(a)(2)(vi)

Section 60.535(a) (2) (vi) states

"...Agree to not perform initial certification tests on any models manufactured by a manufacturer for which the laboratory has conducted research and design services within the past 5 years...".

Myren Consulting, Inc. has done some evaluation testing on at least 2 stove prototypes of a stove designed to burn densified fuel logs during the past 3 years for 2 different firms - same stove, but with a change in ownership. This evaluation testing included both PM emissions and overall efficiency (%OE) measurements. During this testing the manufacturer would make design changes and Myren Consulting, Inc. would conduct the PM and %OE measurements and report the results. The manufacturer would then use that data to make a decision about the next design change. The manufacturer then used all of that information to design and build a new prototype that has many different "k-list" design changes. These changes include a different combustion blower (less CFMs), a different feed tube, a completely redesigned firebox (larger) and a different convection air pathway. Myren Consulting, Inc. had no input in the decisions that led to these design changes and the construction of the latest prototype.

To provide and insure total transparency, Myren Consulting, Inc. has performed 2 PM and %OE evaluation tests (Hi and Low) on this new prototype to verify its performance. The data indicated that the unit was ready for certification testing, so at the manufacturer's request Myren Consulting (1.) submitted some 30 day advance certification test notifications to EPA and (2.) resent a memo to EPA about a proposed test protocol for the unit that was based upon ASTM E2779.

My question is, "Since Myren Consulting, Inc. did not have any input in the development of the design of the most recent prototype other than to supply the manufacturer with test data, can Myren Consulting, Inc. conduct the certification test on this unit?"

I want to be totally upfront on this because I do not want to jeopardize the manufacturer's certification or Myren Consulting, Inc.'s laboratory accreditation. When Myren Consulting, Inc. has done R&D work on a unit, I have referred the manufacturer to a different Lab for the actual certification testing. Case in point, the Kiwi 2.1 VcV stove. I look forward to your reply.

Regards,

Ben Myren

Test Protocol for the Densified Fuel Log Stove

5 messages

Alben T. Myren Jr <myren.ben@gmail.com>

Tue, Dec 27, 2016 at 6:51 PM To: Mike Toney <toney.mike@epamail.epa.gov>, Dusty Henderson <unlimitedpower59@yahoo.com>

Mike,

Received the OK from Sanchez to test the stove that burns densified fuel logs. The manufacturer is bringing the stove to Colville tomorrow so we can start aging it. So by 1.3.17 we will be ready to test. I have turned in 30 day certification test advance notices for the unit for the weeks starting on 1.2.17 and 1.9.17. I know the manufacturer wants to test so he can have numbers for the trade show. So where are we on the protocol? Do I need to turn in some more 30 day advance notices for this stove?

Ben

Toney, Mike <Toney.Mike@epa.gov> Wed, Dec 28, 2016 at 6:55 AM To: "Alben T. Myren Jr" <myren.ben@gmail.com>, Dusty Henderson <unlimitedpower59@yahoo.com> Cc: "Johnson, Steffan" <johnson.steffan@epa.gov>

Hi Ben,

Please call me regarding the protocol if you need to. I looked in my email but did not see one. I know what we talked about regarding the densified pellet heater using ASTM 2779 for the test method. Since Rafael gave you approval you can test using ASTM 2779 for the pellet heater and ASTM 2515 for particulates. Remember to take the first hour filter pull as required in the rule and to measure the CO during testing and to conduct CSA B415 for efficiency. We also need a preburn before testing just like regular wood heater testing, so more than one pellet maybe required during testing but this will be your call. Have a great test.

From: Alben T. Myren Jr [mailto:myren.ben@gmail.com] Sent: Tuesday, December 27, 2016 9:51 PM To: Toney, Mike < Toney. Mike@epa.gov>; Dusty Henderson < unlimitedpower59@yahoo.com> Subject: Test Protocol for the Densified Fuel Log Stove

Mike.

Received the OK from Sanchez to test the stove that burns densified fuel logs. The manufacturer is bringing the stove to Colville tomorrow so we can start aging it. So by 1.3.17 we will be ready to test. I have turned in 30 day certification test advance notices for the unit for the weeks starting on 1.2.17 and 1.9.17. I know the manufacturer wants to test so he can have numbers for the trade show. So where are we on the protocol? Do I need to turn in some more 30 day advance notices for this stove?

Ben

Alben T. Myren Jr <myren.ben@gmail.com>

To: "Toney, Mike" <Toney.Mike@epa.gov>, "Sanchez, Rafael" <sanchez.rafael@epa.gov> Cc: Dusty Henderson <unlimitedpower59@yahoo.com>, "Johnson, Steffan" <johnson.steffan@epa.gov>

Mike, Attached is the memo I sent earlier about testing the densified fuel log stove. And, yes, we are planning to do (1.) a 1 hour preburn on "High" before the start of the high burn test, (2.) a filter set change at 60 minutes in Train 1 at the end of the high burn test segment, (3.) collect all of the necessary data for B415 for CO and %OE, (4.) and reload the stove (add a log or logs) sometime during the test. We will try to sort out when to add the extra logs during aging. My thought is to add the log(s) at the end of the 2 h Med burn segment. It only takes about 15-30 seconds to add a log, so the impact on the data should be minimal. So if you would add the logs at 176 minutes, the stove would have a chance to recover by the next reading (180 minutes). (Remember that the added logs will be on top of the logs that are actually burning at the bottom of the feed tube, so it will be a while before the added logs actually start to burn.) At which time you would take the necessary readings and turn the stove to Low. That would make it easy to do the B415 entries.

Rafael, Dusty is bring the stove up to the lab today. We plan to set it up and start aging it as soon as it arrives. As noted above we will try to sort out when to add the logs during aging. If all goes as planned we will do the integrated test series next week, probably on Wed.

Any thoughts or input from either DC or RTP is welcome.

REGARDS. Ben [Quoted text hidden]

TONEY DENSIFIED FUEL LOG TESTING PROTOCOL MEMO 4.30.16.doc 439K

Toney, Mike <Toney.Mike@epa.gov> To: "Alben T. Myren Jr" <myren.ben@gmail.com>, "Sanchez, Rafael" <Sanchez.Rafael@epa.gov> Cc: Dusty Henderson <unlimitedpower59@yahoo.com>, "Johnson, Steffan" <johnson.steffan@epa.gov>

Hi Ben,

I remember the email now. You are good to go.

From: Alben T. Myren Jr [mailto:myren.ben@gmail.com] Sent: Wednesday, December 28, 2016 11:44 AM To: Toney, Mike <Toney.Mike@epa.gov>; Sanchez, Rafael <Sanchez.Rafael@epa.gov> Cc: Dusty Henderson <unlimitedpower59@yahoo.com>; Johnson, Steffan <johnson.steffan@epa.gov> Subject: Re: Test Protocol for the Densified Fuel Log Stove

[Quoted text hidden]

Alben T. Myren Jr <myren.ben@gmail.com> To: "Toney, Mike" <Toney.Mike@epa.gov>

Thank You! We will run the test on Wed of next week. Ben [Quoted text hidden]

Had to delay testing due to technical issues and weather (CON). Tested unit on 1.9.17

Wed, Dec 28, 2016 at 1:48 PM

WOOD BURNING HEATERS UNIT: 509 OPTIMUM Densified Fuel Log Stove P.1 of 2

Test Method 28R for Certification and Auditing of Wood Heaters

Run #	Date	Setting	Dry Burn Rate (kg/h)	Run Time (minutes)	Heat Output Btu/h	PM Emissions (g/h) 1 st h Int. Avg.	CO Emissions (g/h) Segment Int. Avg.	%OE(%)(B415)(HHV) Segment Int. Avg.
1	1.9.17	High	2.319	60	33,114	1.503	70.51	78.3
1	1.9.17	Medium	2.899	120	42,099		96.32	79.6
1	1.9.17	Low	1.761 ¹	180	25,198		104.79	78.4
Inte	grated A	verages:	2.226	360	32,183	1.890	94.68	79.0

SUMMARY RESULTS-DENSIFIED FUEL LOG HEATERS

Note: (1.) There are no test runs in Dry Burn Rate (BDR) Categories 1 (<0.80 kg/h) and 2 (0.80-1.25 kg/h) because the unit's dry burn rate is controlled by its primary air control and combustion air fan, the density and size of the fuel logs themselves, the amount of fuel remaining in the feed tube at any given time and how the fuel logs "settle" in the feed tube. The logs are gravity fed and logs can "warp" and hang up in the feed tube which slows the DBR. The weight of the logs left in the feed tube affects the feed rate because the weight pressing down from above is what causes the burning end of a log to disintegrate into smaller pieces, i.e., the more weight, the faster the disintegration, which allows more unburnt fuel to drop into the combustion chamber. The DBR data reflects this operating scenario. When the "High" burn test segment was started, the unit had been burning for a little over 75 minutes (~15 minutes for ignition and 60 minutes for Preburn). A fuel log was added at approximately 5 minutes into preburn, so at the end of the "High" burn segment there was enough room in the feed tube to add 2 logs (15.2 lbs.). The DBR for the 60 minute "High" burn segment was 2.319 kg/h with a partially full fee tube. The DBR for the 120 minute "Medium" burn segment was which was started with a full feed tube was 2.899 kg/h. Even though the Primary Air Control (PAC) setting had been reduced to the "Medium" setting, the DBR increased. That clearly shows how the amount of fuel in the feed tube can impact the DBR and that the amount of primary air being pulled through the unit really does not impact the DBR. The unit burned 13.5 lbs. in the 120 minute "Medium" burn test segment. At the end of the Medium burn segment, the PAC was adjusted to the Low burn setting and 1 fuel log (8 lbs.) was added at 20 minutes into the "Low" burn test segment. The DBR immediately increased due to the extra weight in the feed tube and then slowed as the amount of fuel in the feed tube decreased. (See Data Sheet #14, pages 4 of 7 and 5 of 7.) Additional fuel (3.4 lbs, approximately ¹/₂ a log, was added at 312 minutes because the DBR had dropped down to 0.1 lb./ 5 minutes and we were worried that the fire might go out. Again, as soon as fuel was added the DBR increased, but the increase in the burn rate was not as great as when 2 logs were added, again showing how the amount of fuel in the feed tube impacts the burn rate. (See Data Sheet #14, page 6 of 7.) The wild swings in combustion gas (CO2, O2 and CO) concentrations also confirm that the amount of fuel in the feed tube is what really controls how this stove performs. See Data Sheet #14, p4 of 7, at 205 and 210 minutes and look at the DBR and CO2 and CO concentrations. At 205 minutes the DBR was 0.1 lb and the CO2 and CO concentrations were 11.21 and 0.71% respectively. At 210 minutes the DBR was 0.6 lbs. and the CO2 and CO concentrations were 11.76 and 0.85% respectively. When fuel is added the CO2

WOOD BURNING HEATERS UNIT: 509 OPTIMUM Densified Fuel Log Stove P.2 of 2

concentration doesn't change much. So this unit is really a Single Burn Rate Appliance (SBR) with a burn rate that varies due to the amount of fuel remaining in the feed tube. Adjusting the PAC really has little or no affect on the burn rate because the unit uses a combustion air fan to pull the combustion air through the unit and closing the PAC creates a smaller orifice, but the fan just pulls the air through the orifice faster. Unlike most pellet stoves where the speed of the combustion air fan is reduced as the fuel feed rate is reduced, the combustion air fan speed on the Optimum remains the same.

509 OPTIMUM DENSIFIED FUEL LOG STOVE INTEGRATED AVERAGE TEST RESULTS

Integrated averages are different from weighted averages which are based upon the probability factors listed in EPA M28/ M28R, Table 1 and the calculation procedures shown in M28/ M28R Figure 28-5. Integrated averages are based on the test data generated by the test method itself (ASTM E2779) which requires that a pellet heater be operated at three different settings, each for a specific period of time, i.e., 1 h on High, 2 h on Medium and 3 h on Low. Since the sampling is continuous for the 6 h test period stipulated in ASTM E2779, the testing process "automatically" generates the Integrated Average.

The integrated average particulate matter (PM) emission rate (g/h) is

1.890 g/h.

The integrated average particulate matter (PM) emissions (lbs./ MM Btu output) is

0.13 lb./MM Btu output

The integrated average overall HHV efficiency (%OE) is

79.08.

The integrated average overall LHV efficiency (%OE) for the is

85.6%.

The integrated average CO emissions (g/h) is

94.68 g/h

The integrated average CO emissions (g/ kg dry fuel) is

42.52 g/ dry kg of fuel

509 OPTIMUM

P. 1 OF 1

SUMMARY OF ASTM E2515 PARTICULATE EMISSIONS SAMPLING TRAIN PERFORMANCE

T1				Т2										
RUN	DBR	CATCH	SAMPLE	SAMPLE	AVG. %	EMISSIONS	CATCH	SAMPLE	SAMPLE	AVG.	8	EMTSSTONS	Ava	s.
_#	(kg/hr)	(mg)	RATE (cfm)	VOl (dscf)	PROP	(g/h)	(mg)	RATE (cfm)	VOL(dscf)	PROP	•	σ/h	a/h	रू चर्चात
EPA 1	. 2.226	43.2	.539	173.086	99.973	1.975	39.6	.526	172.942	99.96	6	1.805	$\frac{9,11}{1.890}$	$\frac{D111}{4.50}$

SUMMARY OF ASTM E2515 AMBIENT AIR

TRAIN 1 0-60 MINUTE

(ROOM	BLANK)	SAMPI	LING TRA	IN PERFORMANCE	DBR	and	PM EI	MISSIONS
RUN 	CATCH (mg)	SAMPLE RATE (cfm)	SAMPLE VOL. (dscf)	AMBIENT PM CONCENTRATION (mg/dscf)	<u>Run #</u>	DBR (kg/h)	CATCH mg	EMISSIONS g/h
EPA 1	1.8	0.5245	174.665	0.010305	EPA 1	2.312	5.7	1.503
Unit: Optimum Page 1 of 3 WST2-Form 12 Rev 11/2011

Woodstove Data Summary

Run #	¥ }			-			-	,	
Particulate Emissions:	·				<u> </u>	 ,		·	_
Emission Rate:	1.89			·.					a/ha
Emission Factor:	0.85	<u> </u>			•				_ g/Ira
(Dry fuel weight basis)		<u></u>			<u> </u>		<u> </u>		_g/ kg
Efficiency Values: (CSA B415.10-1)									
Combustion Efficiency:	97.0								0/
Heat Transfer Efficiency: HHV:	31.0			<u> </u>					70 0/
Heat Transfer Efficiency: LHV:	38.2			<u> </u>			·	 	
Overall Efficiency: HHV:	79.0	·		······	<u> </u>		<u> </u>		70 0/
Overall Efficiency: LHV:	85.6						·		
Heat Output:								<u></u>	70
Avg. EPA Btu/hr. for test cycle	33,231								Btu/br
Avg. B415 Btu/hr. for test cycle	37,183			<u> </u>		- <u>.</u>		<u></u> .	\underline{B}_{11}/hr
Fuel Burn Rates:	e								
Avg. Dry Burn Rate (Wet Basis)	2.359	(ka/hr
Avg. Dry Burn Rate (Dry Basis)	2.226	·				····	<u> </u>		Kg/III.
PM Sampling Parameters:						······			Kg/III.
Avg. Tunnel Flow(Qsd):	137.562								daafm
Avg. Tunnel Velocity(Vs):	809.431								_usein
Pitot Correction Factor:	.95663	· · · · · · · · · · · · · · · · · · ·		·					n./mm.
Total Sample Volume:	See Dr	ge title	1 Summe	1 20 vas	STM E25	515 PAR	4 cellate		
Avg. Sampling Flow Rate:		Emissia	No SAM.	Oline Tr	and Por (NE MOACE	69.	·	_usci
Avg. % Proportionality:						ويونون وي من المراجع ا مراجع المراجع ال			 0/
Total Particulate Catch:	<u></u> -			- <u></u>		<u> </u>		•	70 70
							·		_mg

Unit: <u>Op Hima M</u> Page 2 of 3 WST2-Form 12 Rev 11/2011

۰.,

Woodstove Data Summary

Run #	¥ <u>1</u>							
Fuel Moisture Content:								· · ·
Kindling (Wet basis):							•	%
Pre Test Fuel (Wet basis):					<u> </u>		·····	%
Test Fuel (Wet basis):	5.629	·					` ` `	%
<u>Air/Fuel Ratio:</u>							,	
lbs. air/lbs. fuel:	12.14					<u> </u>		
Average Stack Gas Composition:								
Avg. % CO_2 :	9.66			<u>.</u>				%
Avg. % O ₂ : (stochiometrically)	11.08							%
Avg. % CO:	0.40	· ·	<u>-</u>					%
Average Stack Gas Flow Rate:		(
Stack Flow Rate- EPA CMB								dscfm
Draft (static):	-,0510							in. H ₂ O
Average Stack Gas Emission Factors								
CO.	4251							(T T
	9468				······		······································	g/K.g
					<u> </u>			g/hr.

Unit: Op Himum Page 3 of 3 WST2-Form 12 Rev 11/2011

Woodstove Data Summary

.

.

Run #	ŧ <u>l</u>	-					
Average Temperatures:					·	<u> </u>	
Stack Gas:	304.0						°F
Stove Top:	NIA						°F
Stove Left Sidewall:							°F
Stove Back:						·····	°F
Stove Right Sidewall:					· · · · · · · · · · · · · · · · · · ·		•F
Stove Bottom:	4						°F
Primary Combustion Chamber Gas	:						°F
Secondary Combustion Chamber G	as:						°F
Catalytic Combustor Exit Gas:							°F
Stove Temperature Change:	<u> </u>						°F
<u>Test Chamber Environment:</u>							
Avg. Barometric Pressure:	28.179						in. Hg
Avg. Temperature:	72.5			<u> </u>			°F
Avg. % Ambient Moisture:	0.90	·					% H ₂ O
Avg. % Relative Humidity:	40.25			·		· · · · · · · · · · · · · · · · · · ·	% RH
Avg. Air Velocity:	<u>>0, 450</u>						ft/sec
Avg. Dilution Tunnel Draft:	1000						in/H ₂ O
(If Applicable)							
<u>Test Fuel Weight and Burn Time:</u>							
Density (Dry basis):	NIA				. <u> </u>	<u>_</u>	g/cm ³
Coal Bed Weight:	N/A						lbs.
Pre Test Fuel Weight (Inc. Kindling	g): <u>6.</u>		<u></u>				lbs.
Test Fuel Load Weight:	31.2						lbs.
Total Test Cycle Burn Time:	360						min.

AGING DATA

The Optimum Densified Fuel Log stove was aged by Myren Consulting, Inc. The Aging installation configuration was the same as the installation used during certification testing. During Aging the stove was run on the Medium setting used during certification testing and the temperature and the (wet) burn rate data were collected using a Data Acquisition System (DAS). The Aging data was then transferred from the DAS spreadsheet to the Aging data pages in this section. The dry burn rate (DBR) varies during the aging process because the densified fuel logs sometimes warp (bend) and then stick in the feed tube, slowing the DBR. When the log(s) finally drop, the DBR will speed up for a while.

PELLET STOVE AGING DATA Woodstove Test Data Sheet #25P WST5-Form 3A, Rev 12/15

Unit:	C)p	ty mu	М	
Date(s)	: 12/	r		
Technic	ians:	£55	A11 M	
Page:		of	all and a second se	

	· r ··			<u>T/C# </u> [
HOUR #	ao 16 date	TIME	POUNDS BURNT	STACK TEMP		COMMENTS
1	12/28	1200	7,5	249	T	Fire STARTED @ 11:00 AM
2	1	1300	7.2	328		
3		1400	-6.7	345		1412 Added 20,2 165. (3/095
4		1500	4,8	346		
5		1600	73	352		
6		1700	4.5	293		New Additional
7		1800	3,9	278		123114 lbs of logs, 29 lbs K
8	12/29	1100	7.2	290		Fire Sharted @ 1000
9		1200	4.5	263		7.852 lbs addd @ 10:34
10		1300	5.9	309		
11		1400	3.5	257		
12		1500	4.5	308		1507 added 23,208 lbs
13		1600	5.2	284	\prod	· · · · · ·
14		1700	50	311		
15		1800	4.6	276		
16	ve jan and a second	1900	33	296		1905 added 15.625 165.
17		2000	4.7	311		
18	L'AND THE REAL	2100	6.9	320		
19		2200	3,1	256		
20	V	2300	3.8	29 B		
21	12/30	1050	6.1	240		FIRE STREED @ 9:50
22		1150	5.7	299		23 470 hos of Long + 2.7 lbs K
23		1250	5.9	313		1320 Added 15.886 lbs,
24		1350	5.5	301		
25		1450	3.9	276		
26		1550	8.7	356		
27		1650	6.2	339		
28		1750	3,9	276		Added 8.018 lbs @ 1545
29	V	1850	8.7	356		

PELLET STOVE AGING DATA Woodstove Test Data Sheet #25P WST5-Form 3A, Rev 12/15

.

1

ŧ

Unit:	tima .	¢	,
Date(s): 12/	28,29,30	312016	11/201
Technicians:	ESS	ATH	}
Page: 🧷	of	2	

	·		· · · · · · · · · · · · · · · · · · ·	T/C# /		
HOUR #	20/6 DATE	TIME	POUNDS BURNT	STACK TEMP		COMMENTS
30	12/30	1950	6.2	339	Π	
31		2050	6.6	349	Π	
32		2150	2.8	282		115.864 165 of Logs +2.4 /65/F
32	12/31	1030	5.4	242		Fire Shield @ 9130
34		1130	5.1	074		945 Added 15.864 164
35		1230	7.1	317		1208 Added 7.926 1/25
36		1830	5.1	320		
24		1430	3.9	264		1456 Added 15.458 lbs.
30		1530	6.4	312	\prod	
74		1630	73	350		
43		1730	5.8	336		
41		1830	3,0	275	Π	
42	1/1/17	1205	6,8	253		Fire Sheled @ 1105
43		1305	6.7	326		23.766 lbs logs + 3.2 165 frid
44		1405	8.2	369		1312 added 1 log - 7.882/15
4S		1505	5 <u>8</u>	318		1532 Adden 2 Logs - 15. 266 lbs.
46		1605	50	343		
47		1725	6.5	349		1736 Added 2 hops 16.340 /bs.
48		1805	6.5	346		J
49		1905	5.6	323		
20		2005	9,4	303	\prod	2006 Add ed 2 hours 15,246 / 5.
51	V	2105	6.4	331		
		ج				
					T	
					\prod	
					$\uparrow \uparrow$	
					\prod	

MYREN CONSULTING, INC

Manufacturer: 509 FAB Model: PRESTO LOG Date: 1.9.17 Run: EPA 1 Control #: Test Duration: 360 Output Category: INTEGRATED Technicians: ATMYREN

Test Results in Accordance with CSA B415.1-09

	HHV Basis	LHV Basis
Overall Efficiency	79.0%	85.6%
Combustion Efficiency	97.0%	97.0%
Heat Transfer Efficiency	81%	88.2%

Output Rate (kJ/h)	33,927	32,183	(Btu/h)
Burn Rate (kg/h)	2.23	4.91	(lb/h)
input (kJ/h)	42,945	40,738	(Btu/h)

Test Load Weight (dry kg)	13.36	29.44	dry lb
MC wet (%)	5.63		
MC dry (%)	5.97		
Particulate (g)	11.33945		
CO (g)	568		
Test Duration (h)	6.00		

Emissions	Particulate	CO
g/MJ Output	0.06	2.79
g/kg Dry Fuel	0.85	42.52
g/h	1.89	94.68
Ib/MM Btu Output	0.13	6.49

Air/Fuel Ratio (A/F) 12.14

VERSION:

(

2.2

12/14/2009

VERSION	9.9	12/14/2000						
Manufacturer:	509 FAB	12/14/2003	Applia	Ince Type:		Cat Man	Cot Pollot)	
Model	DRESTO LOC		Uhhue	ince rype.	NON OA		-cal, Fellel)	
Defer	4 0 47		-		_	(F A)		
Date:	1.9.17		16	mp. Units	F	(ForC)	Defaul	t Fuel Values
Run:	EPA 1		We	lght Units	lb	(kg or lb)		D. Flr
Control #:							HHV (kJ/kg)	19,810
Test Duration:	360						%C	48.73
Output Category:	INTEGRATED			Fuel	Data		%Н	6.87
					D. Fir		%0	43.9
Wood	Molsture (% wet):	5.63		HHV	19,288	k.J/ka	%Ash	0.5
Loa	d Welght (lb wet):	31.20		%C	50.81		740 1011	0.0
Bu	n Rate (drv ko/h):	2.23		%H	69		_	
Total Parti	culate Emissions:	11 33945 n		%0	41 88			Note 1: For o
		11.000 (0 g		%Ach	0.41		•	fuel compositi
				70 m 311	0.41		:	sample in acc
	Avorage	0.40	0.66	44.07	904 94	70 40	L	
	Averages	0.40	9.00	11.00	304.04	12.40		
Element.					Iem	5. (°9∓}		Note 2 [•] In cas
Elapsed	Fuel weight	Fille Gas	Composit	ion (%)	Flue	Room		Remainino" is
Time (min)	Remaining (Ib)	co	CO2	02	Gas	Temp		in a row a "div
0	31.20	0.11	10.89	10.00	327.0	62.0	1	calculation she
5	30.60	0.43	12.72	8.01	336.0	64.0		values by inter
10	29.90	0.43	11.63	9.10	340.0	65.0		and the next ra
· 15	29.40	0.11	10.91	9.98	342.0	65.0		
20	28 80	0.09	10.46	10.44	342.0	66.0	L	
25	28.30	0.08	0 02	10.08	342.0	67.0		
30	27 70	0.00	0.02	11 12	241 0	69.0		
35	27.70	0.17	10 71	10.12	240.0	08,0		
40	27.10	0.17	0.71	10.15	340.0	08.0		
40	20.00	0.12	9.24	11.04	336.0	09.0		
50	20.30	0.20	9.00	11.04	330.0	70.0		
55	20.20	0.30	0.03	10.90	332,0	71.0		
60	20.00	0.00	0.93	13.74	320.0	70.0		
65	25.00	0.90	6.00	14.39	321.0	70.0		
	20.00	0.07	14.17	6.34	318.0	71.0		
75	24.70	0.00	12.0/	8.24	320.0	73.0		
70	24.10	0.05	11.41	9.51	320.0	/3.0		
00	20.40	0.33	10.74	10.04	321.0	73.0		
	22.60	0.08	9.62	11.28	322.0	73.0		
	24.20	0.10	9.07	11.32	323.0	/4.0		
100	21,00	0.08	9.92	10.98	322.0	/4.0		
100	20.90	0.13	11.85	9.03	321.0	74.0		
100	20.40	0.18	11.36	9.49	322.0	74.0		
110	19.90	0.10	10.94	9,95	323.0	74.0		
115	19.40	0.11	9.77	11.12	323.0	74,0		
120	18.80	0.16	10.41	10.45	323,0	74.0		
125	18.30	1.03	10.98	9.45	323.0	74.0		
130	17,70	0.22	11.11	9.72	325.0	74.0		
135	17.00	0.85	13.69	6.83	327.0	74,0		
140	16.30	0.86	12.72	7.79	331.0	74,0		
145	15,80	0.25	10.91	9.91	334.0	74.0		
150	15.30	1.20	12.00	8.34	337.0	74.0		
155	14.70	0.25	10.74	10.08	338,0	73.0		
160	14.30	0.57	10.46	10.20	339.0	74.0		
165	13.80	0.12	10.19	10.69	339.0	73.0		
170	13.20	0.11	10.11	10.78	338.0	73.0		
175	12.50	0.13	8.03	12.85	335.0	73,0		
180	12.30	0.15	5.86	15.01	329.0	73.0		

.

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Oak 19,887 50 6.6 42.9 0.5

----,

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

185	12.10	0.28	7.23	13.57	311.0	73.0
190	11.90	0.12	9.77	11.11	300.0	73.0
195	11.70	0.28	7.73	13.07	291.0	73.0
200	11.50	0.56	4.52	16.14	283.0	73.0
205	11.40	0.71	11.21	9.38	282.0	73.0
210	10.80	0.85	11.76	8.76	279.0	74.0
215	10.50	1.10	11.33	9.06	280.0	74.0
220	9.90	2.34	12.18	7.59	282.0	73.0
225	9.40	2.42	13.12	6.61	287.0	74.0
230	8.90	1.20	10.84	9.50	289.0	74.0
235	8.40	0.10	10.66	10.23	289.0	74.0
240	8.00	1.64	12.35	7.77	291.0	75.0
245	7.30	0.2	12.3	8.54	294	74
250	6.80	0.29	10.86	9.935	295	74
255	6.40	0.1	8.87	12.02	295	75
260	5.90	0.12	8.52	12.36	293	75
265	5.60	0.15	7.85	13.015	290	75
270	5.20	0.16	7.46	13.4	287	74
275	4.80	0.19	6.96	13.885	283	75
280	4.50	0.19	6.46	14.385	278	74
285	4.30	0.21	7.68	13.155	273	74
290	4.00	0.22	7.06	13.77	269	74
295	3.70	0.43	10.31	10.415	267	74
	3.50	0.19	9.52	11.325	265	74
305	3.40	0.38	7.53	13.22	263	73
310	3.30	0.59	5.74	14.905	261	73
315	3.00	0.22	9.49	11.34	262	73
320	2.50	0.26	8.13	12.68	261	73
325	2.10	0.37	10.02	10.735	259	73
330	1.70	0.73	9.2	11.375	259	72
335	1.50	0.31	10.26	10.525	260	73
340	1.20	0.14	9.97	10.9	261	73
345	0.90	0.11	7.75	13.135	262	73
350	0.40	0.14	6.36	14.51	262	73
355	0.10	0.18	5.52	15.33	260	73
360	0.00	0.23	4.27	16.555	256	73

eres. E

-

Er Calc Sheet

MYREN CONSULTING, INC

Manufacturer:	509 FAB
Model:	PRESTO LOG
Date:	1.9.17
Run:	EPA 1
Control #:	
Test Duration:	60
Output Category:	HIGH BURN

Technicians: <u>ATMYREN</u>

Test Results in Accordance with CSA B415.1-09

	HHV Basis	LHV Basis
Overall Efficiency	78.3%	84.8%
Combustion Efficiency	98.0%	98.0%
Heat Transfer Efficiency	80%	86.6%

Output Rate (kJ/h)	34,908	33,114	(Btu/h)
Burn Rate (kg/h)	2.31	5.10	(lb/h)
Input (kJ/h)	44,597	42,305	(Btu/h)

2.31	5.10	dry lb
5.629	• • •	
5.96		
1.5026		
71		
1.00		
	2.31 5.629 5.96 1.5026 71 1.00	2.31 5.10 5.629 5.96 1.5026 71 1.00

Emissions	Particulate	co
g/MJ Output	0.04	2.02
g/kg Dry Fuel	0.65	30.49
g/h	1.50	70.51
Ib/MM Btu Output	0.10	4.69

Air/Fuel Ratio (A/F) 12.34

VERSION:

2.2

12/14/2009

VERSION: Manufacturer: Model:	2.2 509 FAB PRESTO LOG	12/14/200 9	Applia	nce Type:	NON CAT	(Cat, Non-	-Cat, Pellet)			
Date:	1.9.17		Te	mp. Units	F	(F or C)	Defaul	t Fuel Valu	es	
Run:	EPA 1		We	ght Units	lb	(kg or lb)		D. Fir	Oak	
Control #:							HHV (kJ/kg)	19,810	19,887	
Test Duration:	60						%C	48.73	50	
Output Category:	HIGH BURN			Fuel C	Data		%Н	6.87	6.6	
					D. Fir		%0	43.9	42.9	
Wood	Moisture (% wet):	5.63		HHV	19,288	kJ/kg	%Ash	0.5	0.5	
Loa	d Weight (lb wet):	5.40		%С	50.81					
Bur	n Rate (dry kg/h):	2.31		%H	6.9		ſ			
Total Partic	culate Emissions:	1.5026 g		%O	41.88			NOTE 1: FO	r other fuels, use the heating value	and
				%Ash	0.41			sample in a	ccordance with Clause 9.2.	
	Averages	0.2 9	9.62	11.18	335.62	67.31	l		······································	
					Temp). (°F)	r	Noto 2: In .		
Elapsed	Fuel Weight	Flue Gas	Compositi	on (%)	Flue	Room		Remaining	is the same for three or more made	
Time (min)	Remaining (lb)	co	CO2	O ₂	Gas	Temp		in a row a	divide by zero error" will occur in th	ngs
0	5.40	0.11	10.89	10.00	327.0	62.0		calculation	sheet. In such cases, adjust the we	= siaht
5	4.80	0.43	12.72	8.01	336.0	64.0		values by ir	terpolation between the first occure	nce
10	4.10	0.43	11.63	9.10	340.0	65.0		and the nex	t reading showing a decrease in	
15	3.60	0.11	10.91	9.98	342.0	65.0		weight.	· · · · · · · · · · · · · · · · · · ·	
20	3.00	0.09	10.46	10.44	342.0	66.0				
25	2.50	0.08	9.92	10.98	342.0	67.0				
30	1.90	0.10	9.77	11.12	341.0	68.0				
35	1.30	0.17	10.71	10.15	340.0	68.0				
40	1.00	0.12	9.24	11.64	338.0	69.0				
45	0.70	0.20	9.00	11.84	336.0	70.0				
50	0.40	0.36	6.83	13.93	332.0	71.0				
55	0.20	1 0 6 6	6 02	40 74	226.0	70.01				
	0.20	0.55	0.93	13.74	320.0	70.0				

•

1

,

Er Calc Sheet

MYREN CONSULTING, INC

Manufacturer: 19 FABRICATORS Model: MODEL 1

Date:1.9.17Date:1.9.17Run:EPA 1Control #:Test Duration:120Output Category:MEDIUM

Test Results in Accordance with CSA B415.1-09

	HHV Basis	LHV Basis
Overall Efficiency	79.6%	86.3%
Combustion Efficiency	97.7%	97.7%
Heat Transfer Efficiency	81%	88.3%

Output Rate (kJ/h)	44,379	42,099	(Btu/h)
Burn Rate (kg/h)	2.89	6.37	(lb/h)
Input (kJ/h)	55,747	52,882	(Btu/h)

Test Load Weight (dry kg)	5.78	12.74	dry lb
MC wet (%)	5.629		
MC dry (%)	5.96		
Particulate (g)	N/A		
CO (g)	193		
Test Duration (h)	2.00		

Emissions	Particulate	CO
g/MJ Output	#VALUE!	2.17
g/kg Dry Fuel	#VALUE!	33.33
g/h	#VALUE!	96.32
Ib/MM Btu Output	#VALUE!	5.04

Air/Fuel Ratio (A/F) 11.14

2.2

VERSION:

12/14/2009

Technicians: ATMYREN

ATMITCEN

VERSION:	2.2	12/14/2009					
Manufacturer:	509 FABRICATOR	S	Applia	ance Type:	NON CAT	(Cat, Non	-Cat
Model:	MODEL 1						
Date:	1.9.17		Te	emp. Units	F	(F or C)	
Run:	EPA 1		We	eight Units	lb	(kg or lb)	
Control #:				-			H
Test Duration:	120						
Output Category:	MEDIUM			Fuel	Data		
					D. Fir		
Wood	Moisture (% wet):	5.63		HHV	19,288	kJ/kg	
Loa	d Weight (lb wet):	13.50		%C	50.81		
Bur	n Rate (dry kg/h):	2.89		%Н	6.9		
Total Partie	culate Emissions:	N/A	a	%O	41.88		
			0	%Ash	0.41		
	Averages	0.36	10.61	10.15	326.96	73.36	
	•				Temp). (⁰F)	
Elapsed	Fuel Weight	Flue Ga	as Composit	tion (%)	Flue	Room	
Time (min)	Remaining (lb)	со		O ₂	Gas	Temp	
0	13.50	0.98	6.06	14.39	321.0	70.0	l
5	13.00	0.87	14.17	6.34	318.0	71.0	
10	12.40	0.06	12.67	8.24	320.0	73.0	
15	11.80	0.05	11.41	9.51	320.0	73.0	
20	11.10	0.33	10.74	10.04	321.0	73.0	
25	10.50	0.08	9.62	11.28	322.0	73.0	
30	9.90	0.10	9.57	11.32	323.0	74.0	
35	9.30	0.08	9.92	10.98	322.0	74.0	
40	8.60	0.13	11.85	9.03	321.0	74.0	
45	8.10	0.18	11.36	9.49	322.0	74.0	
50	7.60	0.10	10.94	9.95	323.0	74.0	
55	7.10	0.11	9.77	11.11	323.0	74.0	
60	6.50	0.16	10.41	10.45	323.0	74.0	
65	6.00	1.03	10.98	9.45	323.0	74.0	
70	5.40	0.22	11.11	9.72	325.0	74.0	
75	4.70	0.85	13.69	6.83	327.0	74.0	
80	4.00	0.86	12.72	7.79	331.0	74.0	
85	3.50	0.25	10.91	9.91	334.0	74.0	
90	3.00	1.20	12.00	8.34	337.0	74.0	
95	2.40	0.25	10.74	10.08	338.0	73.0	
100	2.00	0.57	10.46	10.20	339.0	74.0	
105	1.50	0.12	10.19	10.69	339.0	73.0	
110	0.90	0.11	10.11	10.78	338.0	73.0	
115	0.20	0.13	8.03	12.85	335.0	73.0	
120	0.00	0.15	5.86	15.01	329.0	73.0	

Cat, Pellet)

Default Fuel Values										
D. Fir Oak										
HV (kJ/kg)	19,810	19,887								
%C	48.73	50								
%Н	6.87	6.6								
%O	43.9	42.9								
%Ash	0.5	0.5								

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

MYREN CONSULTING, INC

Technicians:	ATMYREN
recimicians.	

Manufacturer:	509 FAB
Model:	MODEL 1
Date:	1.9.17
Run:	EPA 1
Control #:	
Test Duration:	180
Output Category:	LOW

Test Results in Accordance with CSA B415.1-09

	HHV Basis	LHV Basis
Overall Efficiency	78.4%	85.0%
Combustion Efficiency	95.8%	95.8%
Heat Transfer Efficiency	82%	88.7%

Output Rate (kJ/h)	26,563	25,198	(Btu/h)
Burn Rate (kg/h)	1.76	3.87	(lb/h)
Input (kJ/h)	33,861	32,121	(Btu/h)

Test Load Weight (dry kg)	5.27	11.61	dry lb
MC wet (%)	5.629		
MC dry (%)	5.96		
Particulate (g)	N/A		
CO (g)	314	1	
Test Duration (h)	3.00	1	

Emissions	Particulate	CO
g/MJ Output	#VALUE!	3.95
g/kg Dry Fuel	#VALUE!	59.69
g/h	#VALUE!	104.79
Ib/MM Btu Output	#VALUE!	9.17

Air/Fuel Ratio (A/F) 13.12

2.2

VERSION:

12/14/2009

VERSION:	2.2	12/14/2009								
Manufacturer:	509 FAB		Applia	ance Type:	NON CAT	(Cat, Non-	-Cat, Pellet)			
Model:	MODEL 1									
Date:	1.9.17		Те	emp. Units	F	(F or C)	Defaul	t Fuel Valu	es	
Run:	EPA 1		We	eight Units	lb	(kg or lb)		D. Fir	Oak	
Control #:				-		,	HHV (kJ/kg)	19,810	19,887	
Test Duration:	180						%C	48.73	50	
Output Category:	LOW			Fuel	Data		%H	6.87	6.6	
e alpar e aleger,	2011				D Fir		%0	43.9	42.9	
Wood	Moisture (% wet):	5.63		нну	10 288	k l/ka	%Ash	0.5	0.5	
1000	Woight (Ib wet):	12.20		%C	50.91	KJ/KY	70ASH	0.5	0.5	
LUa	n Bata (dry ka/h):	12.30		%C	50.61		_			
Dui Total Darti	n Kale (ury ky/n).	1.70	~	<i>%</i> П	0.9			Note 1: Fo	r other fuels	, use the heating value and
Total Faith	culate Emissions.	IN/A	y	%O %Ash	0.41			fuel compo	sition deterr	nined by analysis of fuel
								sample in a	accordance	with Clause 9.2.
	Averages	0.48	8.83	11.87	278.59	73.62				
Flowerd	Evel Mainh4	Elun O		· · · · (0/)	Temp	o. (⁰F) Deem	[Note 2: In	cases where	e the "Fuel Weight
Elapsed	Fuel weight	Flue G	as Composit	ion (%)	Flue	Room		Remaining'	is the same	e for three or more readings
Time (min)	Remaining (lb)	CO		02	Gas	Temp		in a row, a	"divide by ze	ero error" will occur in the
0	12.30	0.15	5.86	15.01	329.0	73.0		calculation	sheet. In su	uch cases, adjust the weight
5	12.10	0.28	7.23	13.57	311.0	73.0		values by ir	nterpolation	between the first occurence
10	11.90	0.12	9.77	11.11	300.0	73.0		and the nex	kt reading sh	howing a decrease in
15	11.70	0.28	7.73	13.07	291.0	73.0	L	weight.		
20	11.50	0.56	4.52	16.14	283.0	73.0				
25	11.40	0.71	11.21	9.38	282.0	73.0				
30	10.80	0.85	11.76	8,76	279.0	74.0				
35	10.50	1 10	11.33	9.06	280.0	74.0				
40	9.90	2 34	12.18	7 59	282.0	73.0				
40	0.30	2.04	12.10	6.61	202.0	74.0				
4J 50	9.40 8.00	1.20	10.12	9.50	207.0	74.0				
55	0.30	0.10	10.64	10.22	203.0	74.0				
55	8.40	0.10	10.00	10.23	209.0	74.0				
60	0.00	1.04	12.33	1.11	291.0	75.0				
65	7.30	0.20	12.30	8.54	294.0	74.0				
70	6.80	0.29	10.86	9.94	295.0	74.0				
/5	6.40	0.10	8.87	12.02	295.0	75.0				
80	5.90	0.12	8.52	12.36	293.0	75.0				
85	5.60	0.15	7.85	13.02	290.0	75.0				
90	5.20	0.16	7.46	13.40	287.0	74.0				
95	4.80	0.19	6.96	13.89	283.0	75.0				
100	4.50	0.19	6.46	14.39	278.0	74.0				
105	4.30	0.21	7.68	13.16	273.0	74.0				
110	4.00	0.22	7.06	13.77	269.0	74.0				
115	3.70	0.43	10.31	10.42	267.0	74.0				
120	3.50	0.19	9.52	11.33	265.0	74.0				
125	3.40	0.38	7.53	13.22	263.0	73.0				
130	3.30	0.59	5.74	14.91	261.0	73.0				
135	3.00	0.22	9.49	11.34	262.0	73.0				
140	2.50	0.26	8.13	12.68	261.0	73.0				
145	2.10	0.37	10.02	10.74	259.0	73.0				
150	1.70	0.73	9.20	11.38	259.0	73.0				
155	1.50	0.31	10.26	10.53	260.0	73.0				
160	1.20	0.14	9,97	10.90	261.0	73.0				
165	0.90	0.11	7 75	13 14	262.0	73.0				
100	0.00	0.14	6.36	14 51	262.0	73.0				
170	0.40	0.14	5.50	15.33	260.0	73.0				
175	0.10	0.10	4.27	16.55	256.0	73.0				
100	0.00	0.23	4.27	10.00	200.0	75.0				

MYREN CONSULTING, INC. Dilution Tunnel Traverse Data with 8

Traverse Points Rev: 1.7.12

Unit: <u>Offinium</u> Run #:<u>EPA1</u> Date: <u>19117</u> Technicians: <u>ATM</u>

Point	Location	Δp	$\sqrt{\Delta p_{trav}}$	Δp	$\sqrt{\Delta p_{cent}}$	T _{trav}	Tcent	Pg
W-1 2 Center 3 4	0.5" 1.5 Center 4.5 5 5	.035 .039 .039	.187 × -197 × -202 ×	.04]	1202	<u>99</u> <u>101</u> <u>102</u>	102	
S-1 2 Center 3 4	0.5 1.5 Center 4.5 5.5	.040 .040	.190 ×	. 039	. 197 4	<u>107</u> <u>103</u> <u>101</u>	102	
	Totals Average °R = (°F	+ 460)	1.528	, ,	<u>.399</u> × .1995 ×	100 209 101.1 561.1	204 + 102 + 562 +	

 $BP = \underline{28,17} \text{ "Hg} Ps = BP + (-Pg/13.6) = \underline{28,17} + (\underline{-/13.6}) = \underline{28,17} \text{ "Hg}$ $LEAK CHECKS: Manometer Level: \underline{04} Zeroed: \underline{04} Tech: \underline{44}$ $Pg Leg: Pre Test: Pressure: \underline{5,690} \text{ "H}_{2}O Movement: \underline{.050} \text{ "H}_{2}O Tech: \underline{44}$ $Post Test: Pressure: \underline{7,490} \text{ "H}_{2}O Movement: \underline{.000} \text{ "H}_{2}O Tech: \underline{540}$ $Velocity Head Leg: Pre Test: Pressure: \underline{7,020} \text{ "H}_{2}O Movement: \underline{.000} \text{ "H}_{2}O Tech: \underline{540}$ $Post Test: Pressure: \underline{7,910} \text{ "H}_{2}O Movement: \underline{.000} \text{ "H}_{2}O Tech: \underline{540}$

· · · · · ·

•

Note: Number in { } under blank lines denotes number of decimals to be used. If a blank calls for an answer already calculated, use the number of decimals previously specified for that answer.

EPA 1 T 1

14

DILUTION TUNNEL CALCULATIONS 4/15/10, Ms=28,78, Bws=2.0%

•

MYREN CONSULTING CERTIFICATION TEST DATA

4/15/10, Ms=28.78, Bws=2.0%	6"Tunnel												
File Name:	EPA 1 T 1		PITOT		GAS	GAS	GAS	·			Tunnel		
Manufacturer:	509 FAB	RUN	DELTAP	TNL	METER	METER	METER	TUNNEL	PROP	dDGM	Static	SUNADE	METED
Model Number:	OPTIMUM	TIME	(in H2O)	TEMP	RDG	TEMP	DELTA H	VELOCITY	RATE	vol std	/- Inch	POOT	
Lab Name:	MYREN	(min)	. ,	(°F)	(ft3)	(°F)	(in.H2O)	(ft/min)	(%)	(ff3)			(M2)
Test Date:	1.9.17	0	0.040	102	415.100	60	0.90	808.79		(10)	0.000	0 20000	
Run Number:	EPA 1 T 1	10	0.040	104	420.387	65	0.90	809.51	106.4	4 912	0.000	0.20000	
Meter Box Y Factor:	0.9743	20	0.040	107	425,719	69	0.90	811.30	105.4	4 912	0.000	0.20000	
Barometric Pressure (in Hg):	28.179	30	0.040	107	431.043	73	0.90	812.38	104.2	4 867	0.000	0.20000	
Dry Gas Meter Temp(avg.)(F):	84	40	0.040	107	436.398	76	0.90	812.38	103.3	4 863	0.000	0.20000	
Delta H(Avg.)(in H2)):	0.900	50	0.040	105	441.778	79	0.90	811.66	102.5	4 859	0.000	0.20000	
Gas meter initial reading:	415.1000	60	0.040	105	447.174	81	0.90	810.95	101.8	4 851	0.000	0.20000	
Gas meter final reading:	609.0750	70	0.040	106	452.570	83	0.90	811 30	101.2	4 833	0.000	0.20000	
Total Particulate Catch(mg):	43.2	80	0.040	106	458.000	83	0.90	811.66	101.5	4 854	0.000	0.20000	
Sampling Flow Rate(cfm):	0.539	90	0.040	106	463.391	84	0.90	811.66	100.7	4 820	0.000	0.20000	
-		100	0.040	106	468,795	84	0.90	811.66	100.8	4 827	0.000	0.20000	
Tunnel Flow (Qsd) (dscfm)	137.562	110	0.040	106	474.186	84.	0.90	811.66	100.3	4 811	0.000	0.20000	
Emission Rate(g/hr):	1.975	120	0.040	106	479.577	85	0.90	811.66	100.3	4 811	0.000	0.20000	
Emission Factor(g/kg)	0.887	130	0.040	105	484,960	85	0.90	811.30	99 g	4 700	0.000	0.20000	
Avg. of Delta P Sq. Roots:	0.2000	140	0.040	107	490.315	85	0.90	811.66	99.3	4 770	0.000	0.20000	
Vs (Avg.)(ft/min):	809.431	150	0.040	107	495.675	86	0.90	812.38	99.5	4 774	0.000	0.20000	
Tunnel Avg. Temperature (F):	102.892	160	0.040	108	500,976	86	0.90	812 74	98.3	4 717	0.000	0.20000	
Test time(min):	360	170	0.040	107	506,254	87	0.90	812 74	97.6	4 603	0.000	0.20000	
Fuel Load: (lbs. Dry):	29.4430	180	0.040	106	511.677	87	0.90	812.02	100.0	4 817	0.000	0.20000	
Wood moisture(%wet):	5.630	190	0.040	100	517.084	87	0.90	809.51	99.1	4 708	0.000	0.20000	
Burn rate(dry kg/hr):	2.226	200	0.040	99	522.509	87	0.90	806.99	99.1	4.100	0.000	0.20000	
Sample Volume (dscf)	173.086	210	0.040	99	527.968	87	0.90	806.63	99.8	4 845	0.000	0.20000	
Avg. Tunnel Static (-inch H2O);	0.0000	220	0.040	100	533.370	87	0.90	806.99	98.9	4 704	0.000	0.20000	
Room Blank Catch (mg/dscf):	0.010305	230	0.040	102	538,737	88	0.90	808.07	98.2	4 750	0.000	0.20000	
Total PM Emissions(Er))(g):	11.8499	240	0.040	103	544.197	88	0.90	809.15	99.9	4 837	0.000	0.20000	
Pitot Correction Factor:	0.95663	250	0.040	103	549.616	88	0.90	809.51	99.2	4.800	0.000	0.20000	
Front Filter Number:	365, 367	260	0.040	102	555.018	89	0.90	809.15	98.6	4,781	0.000	0.20000	
Back Filter Number: _	364, 366	270	0.040	102	560.417	89	0.90	808.79	98.3	4.774	0.000	0.20000	
Beaker number:	57, 56	280	0.040	101	565.813	89	0.90	808.43	98.2	4.771	0.000	0.20000	
PRELIMINARY RESULTS		290	0.040	100	571.222	89	0.90	807.71	98.3	4,783	0.000	0.20000	
FINAL RESULTS:	AUDITED	300	0.040	98	576.637	89	0.90	806.63	98.3	4,788	0.000	0.20000	
DATA SUMMARY		310	0.040	98	582.031	89	0.90	805.91	97.8	4 770	0.000	0.20000	
MODEL:	OPTIMUM	320	0.040	97	587.441	89	0.90	805.55	98.1	4 784	0.000	0.20000	
RUN:	EPA1T1	330	0.040	97	592.858	88	0.90	805.18	98.4	4 794	0.000	0.20000	
DATE:	1.9.17	340	0.040	98	598.255	88	0.90	805.55	98.3	4 781	0.000	0.20000	
DBR:	2.226	350	0.040	98	603.665	88	0.90	805.91	98.5	4 792	0.000	0.20000	
EMISSION RATE (g/hr)(unadj):	1.9750	360	0.040	97	609.075	88	0.90	805.55	98.5	4 792	0.000	0.20000	
EMISSION FACTOR (g/kg):	0.8873	370									3.000	0.20000	
AVG. % PROPORTIONALITY :	99.973	380								†			

EPA 1 T 1 0-60 1.9.17

.

DILUTION TUNNEL CALCULATIONS 1\25\09, Md=28.56, Bws=4% 6

MYREN CONSULTING CERTIFICATION TEST DATA

6" Tunnel

and the second second

File Name:	EPA 1 T 1 0-60)	PITOT		GAS	GAS	GAS			1	Tunnel		DBY CAS
Manufacturer:	509 FAB	RUN	DELTAP	TNL	METER	METER	METER	TUNNEL	PROP	4DGM	Static	SOUME	METED
Model Number:	OPTIMUM	TIME	(- INCH	TEMP	RDG	TEMP	DELTA H	VELOCITY	RATE	vol std	(- Inch	BOOT	
Lab Name:	MYREN	(min)	H20)	(°F)	(ft3)	(°F)	(in.H2O)	(ft/min)	(%)	/ff3)			(m2)
Test Date:	1.9.17	0	0.040	102	415.100	60	0.90	812.10	(70)	(110)	0.000	0 20000	(115)
Run Number:	EPA 1 T 1 0-60	10	0.040	104	420.387	65	0.90	818.50	102.5	4 910	0.000	0.20000	· · · · · · · · · · · · · · · · · · ·
Meter Box Y Factor:	0.9743	20	0.040	107	425.719	69	0.90	820.32	101.6	4 909	0.000	0.20000	
Barometric pressure (in):	28.165	30	0.040	107	431.043	73	0.90	821.41	100.0	4 865	0.000	0.20000	
Gas meter temp (ave):	72	40	0.040	107	436.398	76	0.90	821.41	99.2	4.861	0.000	0.20000	
deita H(avg):	0.900	50	0.040	105	441.778	79	0.90	820.68	98.4	4 857	0.000	0.20000	
Gas meter initial reading:	415.1000	60	0.040	105	447.174	81	0.90	819.96	97.7	4 848	0.000	0.20000	·
Gas meter final reading:	447.1740										0.000	0.20000	
Front catch (acetone) mg:	7.1	80											
first filter catch (mg):	-1.4	90							-,	· ···		·	
second filter catch (mg):	0	100							•		·		
Tunnel Flow (Qsd) (dscfm)	135.735	110							·······			·····	
Emission Rate(g/hr):	1.503	120									<u>-</u>		
Emission Rate(M5H) :	2.552	130											
Avg. of Delta P Sq. Roots:	0.2000	140		·				·		— ·			
Vs (Avg.)(ft/min):	819.196	150											
Tunnel Avg. Temperature (F):	105.286	160			·······					-		·	
Test time(min):	60	170			<u> </u>								
Fuel Load(lb. wet);	5.400	180			······								
Wood moisture(%wet):	5.630	190									· · · · · ·		· · · · · · · · · · · · · · · · · · ·
Burn rate(dry kg/hr):	2.312	200		_					···-	·······			·······
Sample Volume (dscf)	29.260	210								—. — ·			
Avg. Tunnel Static (-inch H2O):	0.0000	220						·				·····	
Room Blank Catch (mg/dscf):	0.010305	230	······									······	
Emission Factor (g/kg):	0.6500	240				·		ł		·			
Pitot Correction Factor:	0.95663	250				· · · · · · · · · · · · · · · · · · ·							
front filter number	365	260									• • • • •		
back filter number	364	270											
Beaker Number:	57	280					· · · · · ·						
PRELIMINARY RESULTS		290	I										
FINAL RESULTS:	AUDITED	300											
DATA SUMMARY		310											
MODEL:	OPTIMUM	320	· · · · · ·							···			
RUN:	EPA 1 T 1 0-60	330	1										
DATE:	1.9.17	340											
DBR:	2.312	350											
EMISSION RATE (g/hr)(M5H)	2.5518	360											
EMISSION FACTOR (g/kg):	0.6500	370				t							
AVG. % PROPORTIONALITY :	99.928	380											
	-												

Meter Bo , 952 Pre Test I , 1 565 Post Test	Me ox <u>45G</u> /.953 Leak Chec /.157 Leak Che	thod 5G Particul <u>P</u> Meter Y :k: <u>, 00 </u> CFM ck: <u>, 00 0 5</u> CFM	ate Sam <u>0</u> 9 9 <u>0</u> -16 <u>0</u> -10 ;	$\frac{71}{25}$ in	O-60 Filter Filter Hg Filt Pro Hg Pro	Unit: Run: Date: // Page: // #'s: (F) 2 /O-Ring II er Size: be ID #: be Length	$ \begin{array}{c} $	<u>Alass</u>
<u></u> <u>Ti</u>	me	Meter	Pi	tot	Tunnel	Meter	Gas	
Clock	Elapsed	Reading	ΔΡ	Pg	Temp (°F)	Temp (°F)	Meter ∆h	Vac (in Hg)
1120	00	415.100	,040	Street Property Property in	102	60	,90	0
30	10	420.387	1040		104	65	190	0
цо	20	425.719	,040		701	69	,90	0
50	30	431,043	,040		107	73	.90	0
1200	40	436.398	.040		107	76	.90	0
10	50	441.778	,040		105	79	.90	0
20	60	447.174	,040		05	8)	190	0
1999	70	ANTO STATE TO A STATE OF A STATE	Start Starter		matterne water	- A I MERICAN COMPANY	Satisfation of Strands and	Martin Construction of the State
Nillion	80	sir galante		,1153)Pa47				
	90			Cores Livit			s et al	
	00							
	10						381134444	
the state of the s	20				*****/ABABA		5.82455077.88	
(6),m., ⁴ 7,2474	30	No						
	40	5 9 1 1						
10	50						75447 5-1 49557	
	60							
s 12)SS Garri Mary	70							
	80							
	90			Ne state				

- **-** -

<u>00</u> <u>28.17</u>	Pre Test Filter Tare Weight Check	End of Test Weight F1.3400 R
	F <u>1,3385</u> R	
Avg. = $\frac{28.165}{100}$ in	Hg"	1.3385

		Me	ethod 5G Parti	culate Sam	T pling Da	60 F ata) Unit: C Run: E	PA 1							
Mete	r Bo	x 450	<u>G-P</u> Met	er Y	13	Filter	Date: Page:1 · #'s: (F)	of 2 367	Rev 12/1: R) 366						
·B7	$\frac{10 + 6}{.0 + 6} = \frac{16.0}{.0 + 6} = \frac{16.0}{$														
	10//.10/ Probe ID #:														
Post 7	. 10//, /0/ Probe ID #: Post Test Leak Check: .000CFM@ - 10.75 in Hg Probe Length: <u>71</u> in <u>G1855</u>														
1030	Time Pitot														
		<u>me</u>	Meter	Pi	tot	Tunnel	Meter	Gas	1						
Clo	ck	Elapsed	Reading	ΔΡ	Pg	Temp (°F)	Temp (°F)	Meter ∆h	Vac (in Hg)						
		00			-										
		10													
		20													
		30							 						
	- Carter	40													
and and a state of the state of	al **	50	anti-the manufacture of the second seco			STERE			BRITE STREET						
122	0	(60)	447,174	.040		105	81	.90	0						
3	0	70	452.570	.04D		106	83	,90	δ						
4	0	80	458,000	.040		106	83	,90	Ο						
5	\mathcal{O}	90	463.391	.640	er (Araba) Sat	106	84	,90	0						
130	0	1 00	468.795	1040		106	84	<u>,9</u> D	0						
	0		474.186	.40		106	84	,90	0						
	0		474.577	,040		106	85	,90	0						
<u></u>	0	(30	484.960	<u>,04D</u>		105	85	.90	0						
Ц	0	(40	490.315	.040		107	85	.90	D						
<u>6</u>	20	150	495.675	.040		107	26	.90	2						
40	0	(60	500. 776	. 02/0		108	86	,90	D						
	<u>,</u>	(70	506.657	.040		107	87	_90	0						
2			511.677	.040		106	87	.90	0						
5	ρ	190	517.084	.040		00	87	.90	0						

$\frac{00}{60} \frac{28.17}{28.16} \frac{300}{360} \frac{28.20}{28.20}$ $\frac{170}{170} \frac{28.16}{28.16} =$	Pre Test Filter Tare Weight Check F R 1,339 Hg"	End of Test Weight F <u>1.3660</u> R
		,0261

Meter Bo . 07-6 Pre Test . 101 Post Test	Method 5G Particulate Sampling DataRun: EPA Method 5G Particulate Sampling DataRun: EPA Date: $1 / 9 / 17$ Page: 2 of 2 Rev 12/15Meter Y .9743Filter #'s: (F) 364 (R) 366 Filter #'s: (F) 364 (R) 366 Filter #'s: (F) 364 (R) 366 Filter/O-Ring ID #:Pre Test Leak Check:														
<u> </u>	TimeMeter Reading (ft ³)PitotTunnel TempMeter TempGas MeterVac (°F)ClockElapsedΦ(ft ³)ΔPPg(°F)Δh(in Hg)														
Clock	Elapsed	Reading	ΔΡ	Pg	Temp (°F)	Temp (°F)	Meter ∆h	Vac (in Hg)							
1440	2 00	522.509	,040	En Charles and the state	99	87	,90	0							
50	2 10	527,968	.040	िकेस)राम करने दूर (क्र	99	87	.90	0							
1500	2 20	533.370	.040		100	87	,90	D							
0	2 30	538,737	1040		102	88	.90	0							
20	(240)	544.197	.040	100 ⁻¹ 12 Abara	103	88	.90	0							
30	2,50	549.616	.040		103	88	.90	0							
40	2 60	555.018	.040		102	89	.90	0							
50	2 70	560,417	,040		102	89	190	0							
1600	2 80	565.813	.040	ALL CARGE & LINE	101	89	,90	0							
10	290	571.222	,040	i) uporte de la composition de	100	89	.90	0							
20	(300)	576.637	, 04D		98	89	.90	0							
30	<u>3</u> 10	582.031	.040	1999 - 19	98	89	.90	0							
40	.	587.441	1040	A real and	97	89	.90	D							
50	330	5921858	.040	i ja	97	88	.90	0							
1700	340	598.255	.040		98	88	.90	0							
0	350	603.665	.040		98	88	.90	0							
20	(360)	609.075	. 040		97	88	<u> 90</u>	D							
	70	· · · · · · · · · · · · · · · · · · ·													
	80														
	90														

í,

ы <u>00</u>	28.17	300	28.20	Pre Test Filter Tare	End of Test Weight
60	28.10	360	28.20	Weight Check	F13660 R
120	28,16			F	
180	28.17			R 1.3399	
$\underline{\partial}UO$	28.19	Avg. =	28.1780	_ in Hg"	1.3399
			-		,0261
					,

WST5-Form 9, Pg2, Rev 12/09

Woodstove Data Sheet #4-1: Initial Filter Pair Tare Weights															
Into Desi	ccator:	Date: 4	24/16	Z Tin	ne: <u> </u>	730	By:	At-n	<u>~</u> F1	ont H	alf_	<u> </u>	Back Half	<u>×</u>	
Manufact	urer:	Pall	<u> </u>		_Size:	<u>110 m</u>	<u>m</u> L	ot. No).: <u>⊤-4</u> ,	2414	$\lfloor c \\$	Grade: <u>AE</u>	Glass	LOM	ym.
Balance U	Jsed: S	artorius	3	Mo	odel: C	P224S			SN:	24850)860)	·····		۰ <u>ر</u>
Filter #'	s I	First Wt.	2016 Date	Time	By	Seco W	ond t.	2011 Dat	e Tin	ie E	By	Third Wt.	Date	Time	E
350/25	/ 1.2	596	8/2	1414	E55	1.25	75	8/16	3 132	y Ai	M				
									,			· · · · · · · · · · · · · · · · · · ·			\bot
352/35	3 1.21	oll	8/2	1415	ESS	1.26	11	8/18	137	5 17	M			ļ	┢
354/35	5 1.20	e12	8/2	1410	हरऽ	1.26	11	8/19	5 132	6 Aī	Thy _				+
			24		~		- 12	01.	120	e A 1	m	1210-	. 12/.	17.17	
356135	71.30	208 2002	1/1/17	1417	AM	1.30	28	0] }	51132		<u>יי</u>	1, 500;	5 1-730	1341	
358/35	91.3	269	8/2	1418	ESS.	1.33	10	8/18	133	D AT	m	1.3363	12/20	1351	X
	1.3	362	41 17	1506	ATTM										
360/34	1 1.34	172	8/2	1419	E35	1.34	73	8/18	133		M	1.3467	12/30	1352	121
	1.34	168	1117-	1508				01.		Res 10			124		1.0
362/36	31.34	18	42	142	ESS	1.34		8/19	133	2 AI	<u>m/</u>	1.3412	1 2/30	1353	
3111	1.34 11 111		8/	1510	MM	4-0	r N N	810	ok	A AT	84	1278-	1 (2/2)	1264	2
204/36	5 1.52	225	°/2 1110	1422_	<u>E>></u> Ann	LED		TID	0-1		<u> </u>	112201	1/20	133/	F
2 de dais	7124	<u></u>	8/2	1213	FEG	134	24	8/18	138	< A1	m	1.3398	12/20	/355	1
500930	122	99	1112	1517	AM	AFY.		,	1 6	24	•	112 2 12			\square
28/369	11.32	19	8/2	1425	ESS	1.32	20	8/14	1330	- AT	M	1.3215	12/30	1356	4
	1,3	213	1/1/12	1519	ATM										
370/37	1 1.31	13	8/2	1426	ESS	1:31	14	8/18	133	2 A7	M	1.3104	12/30	1357	221
	1.31	06	11/2	1522	AM			<u></u>							~
372/37	3 1.31	31	8/2	1427	<u>ES</u>	1.31:	30	8/12	1339	<u>i am</u>	<u>م</u>	1.3/25	1 2/30	>/358	1
	1.3.	24	1/1/12	1528	AIM			1/4	117-		-+				
Cheeledd				T.M.	MA		Date		19/1		ne:	1558	1 150	0	L
Checken	OA	Re]	Balan	ce Roo	m En	wir	onmental	Conditi	ons	
Filter #	WT	Date	Time	e By		/	WB	1)B	%R	H	Date	Time	By	
350/257	.3001	1/3/1	7 1210	> Es	55		55	5	ldo	48		8/2	1345	ESS.	
360/36	1.34/6/0	13/1-	1208	8 ES	5.	/	5١	1	65	48	}	8/18	1244	ATM	
364 365	.3383	13/17	1206	e Es	5.		. 4	9	61	40)	12/30	1207	Arth	_
370/371	.3104	13/17	120	3 89	5		5		45	<u>3</u>		13/17	1200	555	
Data	$\frac{1^{st}}{s/2} \frac{2^{n0}}{2^{n0}} \frac{3^{n0}}{3^{n0}} \frac{4^{n0}}{3^{n0}} \frac{5^{-1}}{3^{n0}}$														
Post Weigl	ning 0.0	0000g	0.0	0000	0,0	2000	<u>, 1</u>	7.00	^b o	0.00	20		······································		
Scale Che	sk ∎10	0.00 <u>0</u> 0g	<u>99</u>	<u>999 3</u>	99	9991	9	999	92	91.9	<u>fi 2</u>	,			

1

WST5-Form 9, Pg3, Rev 12/09

Woodstove Data Sheet #4-2: Initial Beaker Weights (Tare Weights)

Into I	Dessicator: Da	te <u>lo/2</u>	1/16 Ti	me <u></u>	645 By AV	₿{ <u></u>	۲N	1.040	50860			
Balar Bkr #	First Wt	2016 Date	Time	By	Second Wt	2016 Date	Time	By	Third Wt	Date	Time	By
50	70,4391	11/3	1103	ATM	(10, 4392	12/30	1503	Stel				
50								<u> </u>	10100	11.1.		Aura
51	68.1985	11/3	1036	ATM	68,1979	12/32	1435	Speec	68,1486	11/17	150)	HJ
51	68,1974	1/19	1/44	Jul.		121					. <u> </u>	
52	67.0121	11/3	1106	A/M	(69.8122)	12/30	1512	Sur				
52	179774	11/3	1097	A T144	(7.9774)	12/20	1427	941	17 9769	1.1	1117	Am
53	was 11	<u>. 1</u> .2	10.11	/2					an com	<u> </u>		* - •
<u>जि</u> ष	70,5415	113	11.10	ARM	(10,5414)	12/30	1457	Jake				
डप												
55	67.2794	11/3	1056	ATM	67,2796)	12/30	1442_	Sall	EPAI T3			
55	· .					111						Autra.
56	70.2612	H 3	1654	ATM	(70,26/2)	12/30	1440	Sw.	70.2604	1/9	1802	AT UR \
560	70.2609	1/10	1146	Jui	ALEMA	$\frac{1}{12k}$	6	$0 \neq$	70 0014	10	1200	hark
57	10.0069	11/3	10/	Am	10.0069	/ -/30	<u>1447</u>	Suc	10,0002	17	1000	<u> /4V."</u>
54	<u>70.0060</u>	1/10	1140	ATA	MA AULIA	12/20	11101	here .	700416	1/9	1804	ATM
30	10.0116	1)	<u> </u>	<u>[[]</u>	(10,0410)	750	1444	Jowe C	12 FPA I	Ta		<u> </u>
59	70,6473	11/3	1044	ATM	(10. UU77)	12/2	1521	2mg				
59	1010116						<u>, , , , , , , , , , , , , , , , , , , </u>					
		;										
												
					,							
						Data		· · · ,	Time:			<u> </u>
Check	ked by	<u> </u>		<u> </u>		Jaie:			rme	Cond	itions	

CHUCKU	0	A Rewei	gh			В	alance R	oom Eny	vironmen	tal Conc	litions_
Beaker	WT	Date	Time	By		WB	DB	%RH	Date"	Time	By
#		e.	ł			58	30	49	11/3	1028	ATTY
		`				49	61	40	12/30	1207	ATM
· · · ·				-		53	65	44	1/1/1	1441	Arm
					_	50	64	34	1/9/17	936	ESS
					-	53	65	44	1/10/17	1053	AM
Date Post Wei Scale Ch	ghing 0 leck 1	0.0000g	1° <u>11/3</u> 0.00 99.9	116 116 992	12/30/1 0.000 99999		3 rd 1 1 1 1 1 2000 9.3992	4 ⁰ 1/ 9 <u>1/ 9</u> 1/ 9	102 102 103 103 103 103 103 103 103 103 103 103	5 th	

	Weedster	o Dato Shaat	<i>44</i> 1. T	nitial D	:14am D	ain Tan	• W •	abta	1	2	VST5-For	m 9, Pg2	Rev 12/09
	wooustow	e Data Sheet	4 / a /		nier i	an 1ar 1 72		gnts A 5M	×	500M	DIA	A Rom	
. • •.	Into Desico	ator: Date:	6/29	<u>///</u> 1i	me:	1700	By:	<u>/</u> 4 ///	From The D	nt Half	۱ <u></u>	$\frac{1}{2}$	t
	Manufactu	rer: YALI		· · · · ·	_ Size:	<u>110 m</u>	m Lo	ot. No.:	1924	17	Grade: <u>//</u>	5 (AS	SILL
	Balance Us	sed: Sartoriu	S	M	odel: C	P224S			SN: 24	85086	₀ (κ	eg 110	Filte.
	Filter #'s	First Wt.	Date	Time	By	Seco	ond 't.	20 /7- Date	Time	By	Third Wt.	l Date	e Time
	312	.6286	1/8	1946	ATM	.628	35	19	939	ES	X		
	313	.6273	1/8	1948	ATM	.62	71	19	938	ESS	ļ		
	314	,6292	1/9	1306	ATM			· · · · · · · · · · · · · · · · · · ·					
	315	.6326		1307	ATM					ļ			
*	316	.6325		1309	ATM					<u>.</u>			
	317	.6322		1310	ATM	ļ			ļ	ļ		·	
	318	.6332	<u> - </u>	1311	ATM	· .				ļ			┨━━━━┫
	319	.6357		13.12	ATTA								<u> </u>
	320	.6316	<u> </u>	1313	ATM)					ļ		· ·	
	321	.6349	N	1314	ATM	·		<u> </u>					<u> </u>
										·			<u> </u>
													<u> </u>
											· · ·		╂────╂─
											· · · · · · · · · · · · · · · · · · ·		╉───┤
											· · · · ·		
	· · ·		ļ										
			 										<u> </u>
						<u></u>		.		·			╂
			<u> </u>										
					<u> </u>								$+ \cdots + -$
						·	<u> </u>						<u> </u>
								<u> </u>					}
													<u> </u>
													<u> </u>
	Checked by	T					Date	•		Time			<u> </u>
	Checked by	QA Re	weigh		` <u></u>		Batte	Balanco	Room	Envir	onmental	Conditi	ons
	Filter # W	/T Date	Time	By			WB	DI	3	%RH	Date	Ţime	By
						, ,	50	6	Y	34	1/8/17	1903	ATIM
1							50	6	4	34	1/9/17	936	ESS
						er.							
			1 st	10	2 nd	1.2	3	rd alt	2	th .	5 th		
	Date	hα 0.000-	<u>18</u>	114	<u>-10</u>	<u>1117</u>	<u>1</u>	9111 2000	-	, <u>,</u>		_	
	Scale Check	ng 0.0000g 100.0000g	2 99.9	1992	99	.99991	qe	1.999	3 -		·		

WST5-Form 9, Pg3, Rev 12/09

Woodstove Data Sheet #4-2: Initial Beaker Weights (Tare Weights)

. ____

> No No

~

مت.

Bkr #		Firs Wt	t	D D	016 ate	Time	By		S	icon Wt	ıd	2 D	316 ate	Time	By		Th 	ird Vt		Date	Time	B
60	70	.536	4	11	13	11:23	Am	2	0,:	53;	10		22	0922	Im	170	2.5	36	8)	11/23	1820	A.
10				\uparrow	•					······		1	<u> </u>		1		<u></u>	-				<u>+</u>
61	70	.83:	54	11	13	1124	ATM	70	3.8	36	3	11	22	-0920	Mu	TP	. 8'	35	6	11/23	180S	A
61	70	,83!	53	//	25	0824	Su	7	0.{	13	53) 11	26	.949	ATTV		3la	nk	D			
62	68	.73	31	il	13	1116	Am	Ć	8,1	133	$\underline{0}$	$ l _{l}$	22	0924	Jus	T	ne.	IN	1	4000	EPO	
62													<u>, </u>	1								
63	70.	625	2	11	3	1119	ATM	00	2, 6	02;	53	<u>)///</u>	22	.0921	Jui	Th	dir	- T	-44	200	EPAG	T
63							<u> </u>						·	·		<u> </u>	•					
											• . ••••			· · ·								
										_		+				<u> </u>						
										<u> </u>		+	\rightarrow	·								
		····	·									· 	-		•							
																		····.				
		-			-																	
+-		•		<u>.</u>								1	-	· · ·								· .
																				<u> </u>		
					+			·				1										
														• •								
	•																					
					·																	
		-																				
								. -						<u> </u>				-				
											<u>.</u>								·			
							,							·]								
heck	ed t	y <u> </u>	A Re	we	iơh							Date F	: Sala	nce Ro]	l ime Envi	:	men	tali	Condi	tions	
leake	rV	WT Date Time By							÷		W	^ /B)B	%R	H	Dat	e .	Ti	ne H	Bv].
#	<u> </u>				~ ~		_,				-	- 120		10	116	2	<u></u>	<u>2016</u> 2	10	10	ATM	4
	+	. <u></u>					.				\vdash	50	+	10	10	<u> </u>	<u></u>	2 22		<u>~0</u>	<u>n,</u>	1
	+										-		+		<u> </u>		<u></u> 117	22	 ,			1
	+	<u> </u>			+	 		-			-		+-				<u>u</u> /	25	· -···			
		••••••			+												4/:	26			· · ·	1
	1		4	•••	1	1 st			2	nd	L		-1 21	a	L,	Δ th	<u> </u>	<u></u>	4	th .	:	1

Plofi

												1						·		1	
		, yinaya			50	as f					`										
opt	I MA LS I	$a sha b \neq N3570$	9~r 1	Aced 12/19	fone	Bla	ak w	oodsto/	ve Data	Sheet #4	1-3: Col Beakar	nstant I Weight	inal We	eights	:			Unit_0 Run # Date:	etimun EPA 1 1/9/1	<u> </u>	
Beak	ær	Into		Date	Time	By	Fi	ret	Data	Timo	Du	weight	8	D-4			—	<u></u>	<u>-Form 9,</u>	<u>Pg 1, R</u>	ev 10/
61		70.84	44	12/23	1412	AM	70.8	354	12/29	1135	ATM	170,8	(352)	$\frac{1}{2}$	11me	Bv		<u>l'hird</u>	Date	Time	Bv
										· ·	1				1.1.22			<u> </u>	<u> </u>	<u></u>	
<u>. </u>					ļ									Constant Constant State	1	1		<u> </u>	-	<u> </u>	<u> </u>
		<u> </u>			_		<u> </u>				ļ							<u> </u>			
				<u> </u>	<u> </u>						<u> </u>	<u> </u>									
													<u> </u>		<u> </u>						
											<u> </u>	<u> </u>			<u> </u>		- -				
· · · · ·					1	" I	L		I	Final F	l 'ilter W	eights			<u> </u>						
Filte	er#	Into De	ssic	Date	Time	By	Fi	rst	Date	Time	By	Seco	bnd	Date	Time	By	Т	hird	Date	Time	Bv
·									ļ									<u> </u>			
							·			<u> </u>											
										<u> </u>					·						
					·· · · · · · · · · · · · · · · · · · ·											 					
]										<u> </u>	<u> </u>									<u> </u>	ļ
		••																		<u>-</u>	<u> </u>
								,	-			;				. <u></u>					
QA	Rew	eigh: Fi	nal V	Veight		[Sca	le Rooi	m Envir	onmenta	el Cond	itions		 		Seele		.			l
						XX	•	216	1					8		Scale	KUUI		nmentai	Conditi	ons
Date	Bea	ker#	Fina	IWt]	By	Se	igning	Date	Time	By	WB	DB	%RH							<u> </u>	- <u></u>
						<u> </u>		12/20	1100	6774	E 11	10	00	, ,				<u> </u>			
							2	12/20	1201	ATM	49 49	60	137				······	<u> </u>	-		
						 	3	100			- <u>r</u> į		+ <u>-10</u> _	11							
Date	Fil	ter #	Final	W t	By		4					 	†	Com	nent			<u> </u>		<u> </u>	
							5					-	<u> </u>	Bea	karv	' ust	τ, Τ	0.835	3 (12	1 19 116)
							6							15	T	AQE	wł,	70.835	13 (n.	126/16	
			_				7			1]							

1

•

÷	•				Woodsto	ove Data	Sheet #4	-3: Cor	ıstant Final W	/eights	$\left(\begin{array}{c} T \\ 0 \end{array} \right)$	-60	Unit Run #	Dp+	i. 21	ų
		60	M,				Final 1	Rookar	Woights				Date: 1	19/	17	
Beaker	Into	Date	Time	Bv	First	Date	Time	By	Second	Data	Time	D		Form 9,	Pg I, R	ev 10/10
57	70 0198	1/10	2207	AM	70.0132	VII	1546	ESS	70.0130	1/12	1317	ATM	50.0120	V _u	lime	BV
								<u> </u>		<u>+ !'</u>	<u> </u>	111.1.2	10101	116	1355	255
								· · ·		+			1	<u> </u>		
														1	··	
												1		<u> </u>		
		1											·	<u> </u>		
															<u> </u>	L
														1		
	-	[]					Final F	ilter We	eights				-	· · · · · · · · · · · · · · · · · · ·		·J
Filter #	Into Dessic	Date	Time	By	First	Date	Time	By	Second	Date	Time	By	Third	Date	Time	By
F 367,369	1.3400	1/0	1044	ATA	1.3393	110	2027	Sm	1.3389	1/11	1548	Ēζ	1.3374	1/12	1337	ATM
						<u> </u>		i	\frown							
					1.334	110	1538	ESS	1,3371)	1/20	1130	AM				
					<u> </u>	ļ			\leq							
R						ļ			_/							
					·	ļ										
· · · · · · · · · · · · · · · · · · ·							_									
						<u> </u>										

QA	Reweigh: I	inal Weigh	t	Sca	ale Roon	n Envir	onment	al Cond		Scale Room Environmental Conditions							
Date	Beaker #	Final Wt	By	Weighing	2017-	Time	Du	WD		0/ DH	8						
			Dy	Session	Date	Tune	Бу	VV D	DR	%KH	9				<u> </u>	<u> </u>	
				1	1/10	1950	A.M.		\$~!~		10					·····	
				2	1/11	15.39	ESS	46	60	30	11	· · · · · ·					
		-		3	1/12	1234	4.m	50	64	34	12						
Date	Filter #	Final Wt	By	4	416	1531	ESS	50	65	32	Comment		·		L		
				5	1/20	1116	ATM	53	65	44							
				6													
				7			7										

.

•

		~				Woodsto	ove Data	Sheet #4	-3: Coi	nstant Final W	eights	F		Unit(Run #	20th	<u>r.</u>)m 1	<u>. </u>
		70 ml Final Beaker Weights															
	Beaker	Into	Date	Time	Bv	First	Date	Time	Bv	Second	Date	Time	Bv	(Third	Date	Time	
	56	70.2770	<u> 14</u>	1553	E\$4	70.2746	1/12	1306	ATM	70.2737	1/16	1540	ES	10.27-37	1/20	1137	ATM
					<u> </u>									T			
	·				<u> </u>			<u> </u>									
										<u>.</u>							
											<u> </u>						
					┠		$\left \right $				┣	-	<u> </u>	·		ļ	
L		l					<u>L</u>	Final F	ltor W				<u> </u>			<u> </u>	-
Γ	Filter #	Into Dessic	Date	Time	By	First	Date	Time	Bv	Second	Date	Time	P _v	Thind	D -+-		
F	366,367	1.3660	1/10	1222	ATT	1.3652	1/10	2034	Sm	121048	1/11	1555	Dy EXL	19641	Date	11me	By
	,		[<u> </u>		1.0			11.50 10			<u><>></u>	1. 3 977	PIC-	12 4-	ATM
						1,2639	110	1542	ESS	13641	1/20	1147	ATM				
L						······································					<u> </u>		WI.I				<u> </u>
R														· · · · · · · · · · · · · · · · · · ·			<u> </u>
													_		· · · · · ·		<u> </u>
														<u>.</u>			<u>{</u> {
L		····															

QA	Reweigh:]	Final Weigh	t	Sca	ale Roor	n Envire	onmenta	al Cond	itions			Scale	Room 1	Enviro	nmenta	l Cond	itions
Date	Beaker #	ker # Final Wt		Weighing	2017 Data		D	NUD.			8		_	<u> </u>			
			Dy	Session	Date	Lime	ву	wв	DR	%RH	9						-
				1	1/10	1950	Am	32	66	35	10				<u> </u>		
				2	1/11	1539	ESS	46	60	30	11				<u> </u>		<u>†</u> ──
				3	1/12	1234	ATM	50	64	34	12						
Date	Filter #	Final Wt	By	4	1/16	1531	ESS	SP	65	32	Comment				L	I	L
		·		5	1/20	1110	ATM	53	65	44							ľ
				6													
				7			7										

Train 1 Woodstove Particulate Catch Processing Sheet Woodstove Data Sheet #5 ASTM E 2515/ EPA M5G-1 0-60 Minutes: Filters: 0-60 Minutes: 0-60 Min	
Filter # (Front): 365.364 Besker #: 57 Final Wt. 20.0131 a X	-
Tare Wt: 1.3385 g / ml 60 Tare Wt: 10.0060 g /	
Filter # (Rear): Desiccant: Acetone Net Wt : 0041 g	
Tare Wt.: g Beaker Tare Wt. Check: 70.0060 g	
0-60 Minute Combined Filter Final Weight: 1, 3371 g	
0-60 Minute Combined Filter Tare Weight: 1,3385 g	
0-60 Minute Combined Net Catch Weight: -10014 g λ	
60 Minutes Plus:	
Filter # (Front): 366,367 Beaker #: 56 Final Wt.: 70.2737 g X	
Tare Wt.: 1.3399 g ml 70 Tare Wt.: 70,2604 g	
Filter # (Rear): Desiccant: Acetone Net Wt.:,0/33 g +	
Tare Wt.: g Beaker Tare Wt. Check: 70.2605 g	
60 Minute Plus Combined Filter Final Weight: $\frac{1.3641}{g} \times 10^{-10}$	
60 Minute Plus Combined Filter Tare Weight: <u>1,3599</u> g ×	
60 Minute Plus Combined Net Catch Weight:0242g	
Acetone Blank Calculation: Blank Date: 12/19/16 Blank Beaker #: 61 Desiccant: 50 ml Acetone	
Final Wt.: $\frac{10.8352}{g}$ - Tare Wt.: $\frac{70.8353}{g}$ = Net Catch Wt.: $-0.0001 \ge 0.0000$ g	
Net Catch Weight: _,0000 g / 50 ml Acetone = _,0000 g/ml Acetone Blank Residual Value	
0-60 Minute Acetone Residue Value Calculation:	
(<u>,0000</u> g/ml Acetone)(<u>(</u>) ml Acetone) = <u>,000</u> g Residue Value	
60 Minute Plus Acetone Residue Value Calculation:	
(<u>,0000</u> g/ml Acetone)(<u>70</u> ml Acetone) = <u>,0000</u> g Residue Value	
Total Particulate Catch Calculations: 0-60 Minute , 60 Minute Plus	
Combined Filter Net Catch Weight:0014 g	
Acetone Wash Catch Weight: .007(g .0133 g	
Less Acetone Residual Value: 0000 g / 0000 g /	
Equals Net Acetone Wash Catch: <u>100⁴H</u> g .0133 g	
Total Net Catch (Combined Filter + Acetone Catch): <u>.0057</u> g	
<u>5.7</u> mg <u>37.5</u> mg	
Total Train 1 Net Catch (0-60 Minute + 60 Minute Plus Catches):	

-

.

EPA 1 T 2 1.9.17

DILUTION TUNNEL CALCULATIONS 4/15/10, Ms=28.78, Bws=2.0% 6"Tunnel

•

MYREN CONSULTING CERTIFICATION TEST DATA

File Name:	EPA1T2		PITOT		GAS	GAS	GAS	l		r	Tunnal	1	
Manufacturer:	509 FAB	RUN	DELTAP	TNL	METER	METER	METER			ADOM			URY GAS
Model Number:	OPTIMUM	TIME	(in H2O)	TEMP	RDG	TEMP	DELTAH	VELOCITY	DATE			DOOT	MEIER
Lab Name:	MYREN	(min)	. ,	(°F)	(ft3)	(°E)	(in H2O)	(ft/min)	7041 L	(42)		RUUI	READING
Test Date:	1.9.17	0	0.040	102	182,925	53.0	0.800	808 70	(70)	(13)		DELIAP	(M3)
Run Number:	EPA1T2	10	0.040	104	188,199	57.0	0.800	809.51	105.0	1026	0.000	0.20000	·
Meter Box Y Factor:	0.9656	20	0.040	107	193,399	58.0	0.000	811 30	102.0	4.920	0.000	0.20000	
Barometric Pressure (in Hg):	28.179	30	0.040	107	198.631	59.5	0.000	812.38	102.0	4.033	0.000	0.20000	
Dry Gas Meter Temp(avg.)(F):	67	40	0.040	107	203.854	61.5	0.800	812.38	103.0	4.001	0.000	0.20000	<u> </u>
Delta H(Avg.)(in H2)):	0.800	50	0.040	105	209,113	62.5	0.800	811.66	102.1	4.020	0.000	0.20000	L
Gas meter initial reading:	182.925	60	0.040	105	214.367	63.0	0.800	810.95	101.0	4.040	0.000	0.20000	·
Gas meter final reading:	372.443	70	0.040	106	219.598	64.5	0.000	811.30	100.0	4.004	0.000	0.20000	
Total Particulate Catch(mg):	39.6	80	0.040	106	224,829	64.5	0.000	911.50	100.9	4.004	0.000	0.20000	
Sampling Flow Rate(cfm):	0.526	90	0.040	106	230.077	66.0	0.000	811.66	100.0	4.797	0.000	0.20000	
-		100	0.040	106	235 363	66.0	0.800	811.66	100.7	4.806	0.000	0.20000	
Tunnel Flow (Qsd) (dscfm)	137.559	110	0.040	106	240 605	66.0	0.000	911.00	101.1	4.834	0.000	0.20000	·
Emission Rate(g/hr):	1.805	120	0.040	106	245 888	66.0	0.000	911.00	100.5	4.793	0.000	0.20000	
Emission Factor(g/kg)	0.811	130	0.040	105	251 166	67.0	0.000	911 20	400.7	4.831	0.000	0.20000	
Avg. of Delta P Sq. Roots:	0.2000	140	0.040	107	256 420	67.0	0.000	011.30	100.7	4.822	0.000	0.20000	
Vs (Avg.)(ft/min):	809.451	150	0.040	107	261 636	67.0	0.000	011.00	100.1	4.795	0.000	0.20000	
Tunnel Avg. Temperature (F):	102.919	160	0.040	108	266,899	68.0	0.000	012.30	99.5	4./61	0.000	0.20000	
Test time(min):	360	170	0.040	107	272 177	68.0	0.800	012.74	100.2	4.799	0.000	0.20000	
Fuel Load: (ibs. Dry);	29.4430	180	0.040	106	277 469	60.0	0.000	012.74	100.3	4.808	0.000	0.20000	
Wood moisture(%wet):	5.630	190	0.040	100	282 748	60.0	0.000	012.02	100.3	4.816	0.000	0.20000	
Burn rate(dry kg/hr):	2.226	200	0.040	99	288 039	60.0	0.000	009.51	99.4	4.800	0.000	0.20000	
Sample Volume (dscf)	172.942	210	0.040	99	203 320	60.0	0.000	000.99	99.3	4.811	0.000	0.20000	
Avg. Tunnel Static (-inch H2O):	0.0000	220	0.040	100	298 611	60.6	0.000	806.03	99.4	4.810	0.000	0.20000	
Room Blank Catch (mg/dscf):	0.010305	230	0.040	102	303 883	60 0	0.800	809.07	99.2	4.800	0.000	0.20000	
Total PM Emissions(Er))(g):	10.8290	240	0.040	103	309.178	70.0	0.800	800.07	99.2	4.791	0.000	0.20000	
Pitot Correction Factor:	0.95663	250	0.040	103	314,430	70.0	0.000	809.15	99.7	4.010	0.000	0.20000	
Front Filter Number:	363	260	0.040	102	319.687	70.5	0.800	809.15	00.1	4.700	0.000	0.20000	
Back Filter Number:	362	270	0.040	102	324,950	710	0.000	809.10	90.0	4.709	0.000	0.20000	
Beaker number:	58	280	0.040	101	330.211	710	0.000	808.43	90.0	4.709	0.000	0.20000	
PRELIMINARY RESULTS		290	0.040	100	335.485	710	0.000	807 71	90.3	4.700	0.000	0.20000	
FINAL RESULTS:	AUDITED	300	0.040	98	340,750	71.5	0.000	806.63	90.0	4.777	0.000	0.20000	
DATA SUMMARY		310	0.040	98	346.019	71.5	0.000	805.03	00.0	4.707	0.000	0.20000	
MODEL:	OPTIMUM	320	0.040	97	351,298	71.5	0.000	805.55	90.0	4./08	0.000	0.20000	
RUN:	EPA1T2	330	0.040	97	356.571	71.5	0.000	805.19	90.1	4.770	0.000	0.20000	
DATE: –	1.9.17	340	0.040	98	361,863	715	0.000	805.55	0.0	4.//2	0.000	0.20000	
DBR:	2.226	350	0.040	98	367,152	71.0	0.800	805.01	00.4	4.789	0.000	0.20000	
EMISSION RATE (g/hr)(unadj):	1.8048	360	0.040	98	372.443	71.0	0.000	805.01	00.0	4.709	0.000	0.20000	
EMISSION FACTOR (g/kg):	0.8108	370					0.000	000.91	30.0	4.793	0.000	0.20000	
AVG. % PROPORTIONALITY :	99.966 [380											

Meter Bo , 095 Pre Test I , 492 Post Test	Me x <u>511</u> / 6 9 Leak Check	thod 5G Particu <u>M</u> Meter 75 ck: <u>,0025</u> CFM	late Sam Y9(I@2 : @13	T pling Da .56 <u>2,25</u> in .0_in	2 nta Filter Hg Filt Pro Hg Pro	Unit: Run: Date:/ Page:/ r/O-Ring I ter Size: obe ID #: obe Length	$\begin{array}{c} 0 & p \neq i \\ p \uparrow & j \\ \hline & f & 2 \\ \hline & of & 2 \\ \hline &$	Mum /17 Rev 12/15 R) 362						
Time Pitot Tunnel Meter Gas Reading Temp Temp Meter Vac														
Clock	Elapsed	Reading	ΔΡ	Pg	Temp (°F)	Temp (°F)	Meter ∆h	Vac (in Hg)						
1120	(00)	182.925	,040	ANTER STREET STREET	102	53	80	-2.25						
30	10	188, 199	,040		104	57	,80	-2.25						
40	20	193.399	,040		107	58	.80	-2.25						
50	30	198,631	.040		107	59.5	.80	- 2.25						
200	40	203.854	.040		107	61.5	.80	-2.25						
10	50	209.113	1040		105	62.5	.80	-2.25						
20	(60)	214.367	,040		105	63	.80	-2.25						
30	70	219.598	,040		106	64.5	.80	-2.25						
40	80	224.929	.040		106	64.5	,80	-2.25						
50	90	230.077	,040		104	لعالما	.80	- 7.25						
1300	00	235.363	,040		106	ماقا	,80	-2.75						
10	10	240.605	,040	A CONTRACTOR	106	lele	.80	-2.25						
20	(120)	245,888	,040		106	66	,80	-2.25						
30	130	251.166	.040		05	67	,80	-2.25						
40	40	256.420	,040		107	67	.80	-2.25						
50	\$50	261.636	.040		107	67	.80	-2.25						
1400	60	266.899	.040		108	68	.80	-2.25						
10	170	272.177	,040		107	68	.80	-2.25						
20	(180)	277,469	.040		106	69	.80	-2.25						
30	}90	282.748	.040	274	100	69	.90	-2.25						

•••••

00	28.17	300 2	8.20]	Pre Test Filter Tare
60	28.16	360 2	8,20	•	Weight Check
120	28,16	<u> </u>			
<u>80</u>	28.17				R <u>1,340</u> 9
<u>,940</u>	2819-	Avg. $=20$	1400	in Hg"	

End of Test Weight F <u>/3707</u> R_____

1.341 2 96

٠:

Meter Bo .095 Pre Test I . 492 Post Test	Method 5G Particulate Sampling DataUnit: $\bigcirc phi \land Mum$ Method 5G Particulate Sampling DataRun: \boxed{phi} Mun: \boxed{phi} Page: $\bigcirc of ?$ Page: $\bigcirc of ?$ Rev 12/15Meter Box $511 \cdot M$ Meter Y $,9656$ Filter #'s: (F) 362 (R) 362 Meter Box $511 \cdot M$ Meter Y $,9656$ Filter /O-Ring ID #:Page: $\bigcirc of ?$ Rev 12/15Meter Box $511 \cdot M$ Meter Y $,9656$ Filter /O-Ring ID #:Page: $\bigcirc of ?$ Rev 12/15Meter Box $511 \cdot M$ Meter Y $,9656$ Filter/O-Ring ID #:Page: $\bigcirc 002$ CFM@ $-27,25$ in HgFilter Size: $\bigcirc 110$ mmMulticle Mathematical Science Action CFM@ -13.0 In HgProbe ID #:Page: $\boxed{100}$ Page: $\boxed{100}$ Page: $\boxed{100}$														
<u>Ti</u>	Time Meter Pitot Tunnel Meter Gas Reading Temp Temp Meter Vac														
Clock	Meter Reading ClockMeter Reading (ft³)Tunnel ΔPMeter Temp (°F)Gas MeterVac (in Hg440200283.039,0409969.80-2.25														
1440	200	69	-80	-2.25											
50	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
1500	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$														
. 10	2 30	303.883	.040		102	69	-80	-2,25							
20	(240)	309,178	.040		103	70	,80	-2.25							
30	250	314,430	.040		103	70	.80	-2.25							
40	2 60	319.687	.~0		102	70,5	.80	-2.25							
50	270	324.950	,040		102	7	.80	-2.25							
1600	280	330,211	,040		10.	[7	08.	-2.25							
10	290	335.485	.040		100	71	.80	-2,25							
20	(300)	340,750	.040		98	71.5	.80	-2,25							
30	3 10	346.019	,040		98	71.5	.80	-2.25							
40	\$20	351.298	.040		97	71.5	.80	-225							
50	3 0	3561571	1040		97	-71.5	.80	-2.25							
1700	<u></u> 40	361.863	.040		98	71.5	.80	-2.25							
0	250	367.152	,040		48	ור	.80	-2.25							
20	(360)	372.443	,040	tester	98	71	,80	-2.25							
	70						· · · · · · · · ·								
	80	·····													
	90			in the second se											

. .

 $\frac{28.17}{28.19} \xrightarrow{\text{Avg.} = 28.1486} \text{ in Hg"}$ End of Test Weight 00 F_____ R_____ 60 .

Woodstove Data Sheet #4-3: Constant Final Weights

Unit $Q_{D} + M_{H}$ Run # $I \in PA + I_{H}$ Date: $I = I = PA + I_{H}$

12

		<u> </u>	> m/	, 			Final H	Beaker \	Weights		WST5-Form 9, Pg 1, Rev 10/1					
Beaker	Into	Date	Time	Bv	First	Dạte	Date Time By Second Date T						Third	Date	Time	Bv
58	70.0559	1/10	1005	ATM	10.0538	1/10	2011	J.M.	70,0535	1 Yn	1541	ESS	70.0538	1/12	1257	AM
						c			1-					6		
					70.0527	1/6	1544	655	(70,0521	511/20	20 1133 A					
								1								
	п															
		1	1										*			
					1		Final F	ilter We	eights	1		1			1	
Filter #	Into Dessic	Date	Time	By	First	Date	Time	By	Second	Date	Time	By	Third	Date	Time	By
F 362,363	1.3707	1/9	1815	Am	1.3701	1/10	2031	em	1.3698	1/11	1543	ESS.	1.3697	Y12	1324	ATA
		1			¥						<u></u>				f	-*
					1.3693	1/16	1546	ESS	1.3697	1/20	1139	ATTM	7.3(.97)	1/2-2	0929	An
•										1/2				1		
R		1 1							×	1 1			<i>Q</i>		*9 ⁻	· · · ·
						· ·			•			-				<u> </u>
									<u> </u>	+ -			¥			
		+					1	+		<u> </u>						+
	L															

Q.A	Reweigh: I	Final Weight	t	Sc	ale Roon	n Envire	onment	al Cond	Scale Room Environmental Co					al Cond	itions		
	te Beaker # Final Wt By			Weighing	2017	-	_				8			Ī			Ţ
Date	Beaker #	Final Wt	Ву	Session	Date	Time	Ву	WB	DB	%RH	9				+		
				1	1/10	1950	Am	52	66	35	10				<u> </u>		•
				2	1/11	1539	ESS	Ц	60	30	11					1	
	-			3	412	1234	ATM	50	64	34	12						
Date	Filter #	Final Wt	Bv	4	416	1531	ESS	50	65	32	Comment		•			_	
				5	1/20	1110	ATM	53	65	44	1						
				6	1/21	924	ATM	52	64	43							
l				7			1]						
Train 2/ Room Blank Woodstove Particulate Catch Processing Sheet Woodstove Data Sheet #5 ASTM E 2515/ EPA M5G-1 Filters:	Unit: Optimum Run: EPAI, Train 72 Date: 1/9/17 Technicians: Arm Revised 11/15 - Data Sheet #5A																
--	--																
Filter # (Front): 362.363 / Beaker # 58	Final Wt . 70,0526 a																
Tare Wt.: 1.3411 g ml 45	Tare Wt.: $\frac{70.0416}{g}$ X																
Filter # (Rear): Desiccant: Acet	one Net Wt.: <u>,0110</u> g ×																
Tare Wt.: g Beaker Tare Wt	t,. Check: <u>30.0416</u> g																
Combined Filter Final Weight: 1.3697 g	X 18.1																
Combined Filter Tare Weight:g																	
Combined Net Catch Weight:O206 g	~																
Acetone Blank Calculation: Blank Date: 12/19/16 B	lank Beaker #: <u>61</u> Desiccant: 50 ml Acetone																
Final Wt.: 70.8352 g - Tare Wt.: 70.8353	g = Net Catch Wt.: 0.0001 = 0.0000 g																
Net Catch Weight: <u></u>	, 🖚 g/ml Acetone Blank Residual Value																
Acetone Residue Value Calculation:																	
(<u>.0000</u> g/ml Acetone)(<u>65</u> ml Acetone) =	g Residue Value																
Total Particulate Catch Calculations:																	
Combined Filter Net Catch Weight:	.0286 g 7																
Acetone Wash Catch Weight:																	
Less Acetone Residual Value: - 1000 g /																	
Equals Net Acetone Wash Catch:	.0110 g +																
Total Net Catch (Combined Filter + Acetone Catch):	<u>.0396</u> g + <u>39.6</u> mg +																

•

۰.

EPA 1 T 3 1.9.17

ROOM BLANK SAMPLE FLOW PROPORTIONALITY

5/1/2008

MYREN CONSULTING CERTIFICATION TEST DATA

5/1/2000									
File Name:	EPA 1 T 3		GAS	INTERVAL	SAMPLING	INTERVAL	DRY GAS	DRY GAS	DRY GAS
Manufacturer:	509 FAB	RUN	METER	SAMPLE	RATE	SAMPLING	METER	METER	TEMP
Model Number:	OPTIMUM	TIME	READING	VOLUME	8	RATE	READING	Δh	F
Lab Name:	MYREN	(min)	(Cu, Ft,)	(Cu. Ft.)	DIFFERENCE	(cfm)	(M3)		1
Test Date:	1.9.17	0	11165.0004				316.1576	0.120	53.5
Run Number:	EPA 1 T 3	10	11170.3117	5.3113	0.0000	0.53113	316.3080	0.120	57.0
Initial Meter Reading (cf):	11165.0004	20	11175.5665	5.2548	-1.0638	0.52548	316.4568	0.120	58.5
Final Meter Reading (cf):	11353.8350	30	11180.8249	5.2584	-0.9973	0.52584	316.6057	0.120	60.0
Test Time (Min):	360.0	40	11186.0620	5.2372	-1.3963	0.52372	316.7540	0.120	62.0
Average Sample Rate (cfm):	0.5245	50	11191.3169	5.2548	-1.0638	0.52548	316.9028	0.120	63.0
Preliminary Results:		60	11196.5823	5.2654	-0.8644	0.52654	317.0519	0.120	63.5
Final results:	AUDITED	70	11201.8336	5.2513	-1.1303	0.52513	317.2006	0.120	65.5
BP:	28.1786	80	11207.0849	5.2513	-1.1303	0.52513	317.3493	0.120	65.5
Average Δ_h :	0.120	90	11212.6822	5.5974	5.3856	0.55974	317.5078	0.120	65.5
Avg. Dry Gas Meter Temp (F):	66.9	100	11217.5698	4.8875	-7.9787	0.48875	317.6462	0.120	66.5
Sample Volume (dscf):	174.665	110	11222.8281	5.2584	-0.9973	0.52584	317.7951	0,120	66.5
Dry Gas Meter Y:	0.9802	120	11228.0794	5.2513	-1.1303	0.52513	317.9438	0.120	66.5
Total Room Blank Catch (mg):	1.800	130	11233.3413	5.2619	-0.9309	0.52619	318.0928	0.120	66.5
Room Blank mg/dscf	0.010305	140	11238.5997	5.2584	-0.9973	0.52584	318.2417	0.120	67.0
Avg. Sampling Rate $\Delta_{\mathfrak{b}(\mathfrak{d})}$:	-1.241	150	11243.8615	5.2619	-0.9309	0.52619	318.3907	0.120	67.5
		160	11249.1234	5.2619	-0.9309	0.52619	318.5397	0.120	67.5
		170	11254.3853	5.2619	-0.9309	0.52619	318.6887	0.120	68.5
_		180	11259.6507	5.2654	-0.8644	0.52654	318.8378	0.120	68.5
_		190	11264.9091	5.2584	-0.9973	0.52584	318.9867	0.120	69.0
		200	11270.1463	5.2372	-1.3963	0.52372	319.1350	0.120	68.5
		210	11275.3975	5.2513	-1.1303	0.52513	319.2837	0.120	69.0
		220	11280.6524	5.2548	-1.0638	0.52548	319.4325	0.120	69.5
		230	11285.8966	5.2442	-1.2633	0.52442	319.5810	0.120	69.0
		240	11291.1196	5.2230	-1.6622	0.52230	319.7289	0.120	69.5
		250	11296.3391	5.2195	-1.7287	0.52195	319.8767	0.120	69.5
		260	11301.5692	5.2301	-1.5293	0.52301	320.0248	0.120	70.5
-		270	11306.8064	5.2372	-1.3963	0.52372	320.1731	0.120	70.5
		_280	11312.0294	5.2230	-1.6622	0,52230	320.3210	0.120	70.5
		290	11317.2560	5.2266	-1.5957	0.52266	320.4690	0.120	70.5
		300	11322.4755	5.2195	-1.7287	0.52195	320.6168	0.120	70.5
	· · · · · · · · · · · · · · · · · · ·	310	11327.6986	5.2230	-1.6622	0.52230	320.7647	0.120	70.5
-		320	11332.9357	5.2372	-1.3963	0.52372	320.9130	0.120	70.0
-		330	11338.1552	5.2195	-1.7287	0.52195	321.0608	0.120	70.0
-	·····	340	11343.3889	5.2336	-1.4628	0.52336	321.2090	0.120	70.0
-		350	11348.6084	5.2195	-1.7287	0.52195	321.3568	0.120	70.0
-		360	11353.8350	5.2266	-1.5957	0.52266	321.5048	0.120	70.0

Ì

- **a**

	Me	ethod 5G Particul	ate Samj	oling Da	T3 fa	Unit: C Run: E Date: 1 Page: 7	ptime 19-1 19/17	L M 2_Rev 12/15
Meter I	Box 170	A C D C D Z		A 624		π s. (<u>r)</u>) #4.	***************
, 4740	5/14+		~ <u>~ /4</u>	375.	Г ЦЦС <i>Г/</i> ТТ.— 17544			103 mm
Pre Tes	t Leak Che		(a)	In	Hg Thu Due	er Size: <u></u>		
, 5063	/,3064			2.	Pro	00 ID #:	د مفتتم	NIA
Post Te	st Leak Ch	eck: 10035 CFM(a)!		Hg Pro	be Length	: <u> </u>	
	<u>Time</u>	Meter	Pi	tot	Tunnel	Meter	Gas	
		Reading			Temp	Temp	Meter	Vac
Clock	C Elapsed	(m ⁻)(m ⁻)	ΔΡ	Pg	(-F)	(°F)		
1120	(00)	316.1546		P.S. T. Concernance	And and a second second	53.5	120	-15
30	10	316,3080				57	.120	-7.8
40	20	316.4568	Stat.			58.5	.120	-2,0
50	> 30	316,6057				60	,120	-2,0
1200	40	316,7540				62	.120	-2.0
D	50	316,9028	The Worker of		<u>.</u>	63	.120	-2.0
Zi) (6)	317.0579				63.5	,120	-2,0
30	> 70	317.2000				65.5	120	-210
6.)	O 80	317, 3493		1		15.5	,120	-7.0
5	C 90	317.5078				65.5	.120	-2,0
1:30	0 00	317,6462			and a second	66.5	.120	-2,0
[1	2 110	317,7951				lele.5	1120	-2,0
	2 (20)	317,9438				Jele . 5	.120	-2.0
3	D 130	318,0928				66.5	.120	-2,0
4	0 140	318.2417		sine sine sine sine sine sine sine sine	MAN NAME AND A DECEMBER OF A D	67	,120	-7.0
S	0 150	318.3907	ł.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		67.5	.120	-2,0
140	D 160	318,5397				67.5	.120	-2,0
t t	0 170	318.6887				68.5	,120	-2,0
2	0 (180)	318.8378	an strange		317 HALF	68.5	,120	-2,0
30) 90	318.9867	ton appendix			69	,120	~Z.D

BP

End of Test Weight F______ R_____ .6282____ R_____ .6285_____ .0003

Aeter Bo 1470 Pre Test I , SOG Post Test I	Met x <u>Tre</u> /.1472 Leak Chec 3/,5064 Leak Chec	thod 5G Particul 24 + 3 Meter Y = .0002= k: .0071 CFM(10001cm ck: .0035 CFM(ate Samp 	oling Da 02 <u>45</u> in	73 ta Filter Filter, Hg Filt Pro Hg Pro	Unit: Run: Date: Page: #'s: (F) O-Ring II er Size: be ID #: be Length	$\frac{2}{2} - \frac{1}{2}$	1 44 1 7
<u>Ti</u>	me	Meter	Pit	ot	Tunnel	Meter	Gas	
Clock	Elapsed	Reading (m ³)	ΔP	Pg	Temp (°F)	Temp (°F)	Meter ∆h	Vac (in Hg)
440	200	319,1350	and the second second			68.5	.120	-2.0
50	210	319.2837				69	.120	-2.0
1500	2 20	319, 4325				69.5	120	-2,0
10	230	319, 5810				69	.120	-2,0
20	240	319,7289				69.5	, IZO	-2,0
30	250	319,8767				69.5	.120	-2.0
40	260	320,0248				70.5	,120	-2.0
50	270	320 1731				70.5	,120	-2,0
1600	280	320.3210				70.5	021,	-2,0
10	290	320,4690			ALCONG ALCONG	70.5	,120	-2,0
20	(300)	320.6168		27 Martin Landing		70.5	,120	-2,0
30	310	320:7647			-	70,5	.170	-2,0
40	320	320,9130	The second s	VINC Chiefan		50	,120	-2,0
50	_330	321.0608	Surgery Constraints		ngi kathana ngi	טר	,120	- 2,0
1700	_340	321,2090				70	120	-2.0
()	350	321,3568	C-system of the			0	.120	-2,0
20	(360)	321.5048				70	170	-210
	70			1				
	80							
	90		C. C	A				

BP

Pre Test Filter Tare Weight Check \mathbf{F} Avg. = 28.1786 in Hg"

End of Test Weight F_. () 8.82 R____

285 . . 0003

																C a	 j		
	,					W00(dstove	Data Sl	neet #4-	3: Cons	tant Fin	al Weig	hts	[-].	\sim	Unit Run #		X	
			2	3					Final B	eaker W	Veights					Date: V WST5-F	orm 9, F	1, Re	710/10
Beak	er Int		ate	Time	Bv	First		ate	l'ime	Bv	Secon	l pu	Date]	lime	Bv	Third	Date	Time	Bv
25	6 7 2		2	20) そ	J.28:	2		L 602	Ess	67.26	1 11	121	503 A	X	Lo7, 2835	'/ILo	ISUR 6	3
						$\left \right\rangle$													
					9	F. 28.	3614	-	8	ATM									
					4	1													
						Š													
			e				+						-		_				
							+						_		•				
							-		Tinal Fi	lter Wei	ights]
Filte	r# Into D	bessic D	ate	Time	By	First	-	Date	Time	By	Secon	q p	ate T	ime]	By	Third	Date	Time	By
	3C9			00		1024		No.	2030	Ř	1026	<u>ko V</u>	لايده منابعه محمد ا	<u>(</u>) ()	5	(265	2.7	500	
ġ.	K	e 2	\uparrow	<u></u>										é) Star		
					P	220		116	1549	ES5				*					
		_			+-														
ð	A Reweigh: I	Final We	ight			Scale	Room	Enviro	nmenta	l Condi	tions			S	cale R	oom Environ	mental (Conditio	suc
1		; ; ;			Weigh	ing	tioz	Ē	ç		Ę		8						
Date	Beaker #		 1	<u></u>	Sessi	, noi	Date	Time	Â	9 X	au	WWW	6		 _				
					1		10	0531	MEV	22	66	N.C.	10	-					
					2	1	/ 1/	1539	E\$5	Чu	০খ	30	11						
				-	3		1/12	234	A TW	8	64	34	12						
Date	Filter #	Final V	Vt 1	2	4	_]	//e	<u>S</u>	ess	20	5	32	Comme	ent 7	Oke"	CT. 1791			
			-		5		120	011	A TWA	g	3	5							
			-		9		-												_
					L				Ĺ								ĸ		

a bana	Train 2/ Room Blank Woodstove Particulate Catch Processing Sheet Woodstove Data Sheet #5 ASTM E 2515/ EPA M5G-1 Unit: Optimum T3 Date: 1/9/17 Technicians: <u>ATM</u> 55 Revised 11/15 - Data Sheet #5A
	Filters: Filters: Filter # (Front): 312 Beaker #: 55 Final Wt.: $67,2836$ g X Tare Wt.:
	Filter # (Rear): Desiccant: Acetone Net Wt.: 0040 g Tare Wt.: g Beaker Tare Wt., Check: 47.2794 g
	Combined Filter Final Weight: $_{e}6263$ g Combined Filter Tare Weight: $_{e}6285$ g Combined Net Catch Weight: $_{e}0032$ g Acctone Blank Calculation: Blank Date: $12/13/14$ Blank Basker #: (a/ Designant: 50 ml Acctone
	Final Wt.: <u>70.8352</u> g - Tare Wt.: <u>70.8353</u> g = Net Catch Wt.: <u>0.0001 = 0.0000</u> g Net Catch Weight: <u>.0000</u> g/ 50 ml Acetone = <u>.0000</u> g/ml Acetone Blank Residual Value
- 2	<u>Acetone Residue Value Calculation:</u> (<u>.0000</u> g/ml Acetone)(<u>40</u> ml Acetone) = <u>.0000</u> g Residue Value <u>Total Particulate Catch Calculations:</u>
	Combined Filter Net Catch Weight: Acetone Wash Catch Weight: Less Acetone Residual Value: $0022 g \chi$ $0022 g \chi$
	Equals Net Acetone Wash Catch: $.0040 \text{ g}$ Total Net Catch (Combined Filter + Acetone Catch): $.0018 \text{ g}$ I.8 mg X

Woodstove Data Sheet 4-4 Scale QC Record Sheet

ţ

From: 11 5 / 15. Through:

Scale 2

 Scale:
 Sartorius

 Model:
 CPA 2245

 SN:
 24850860

 Rev:
 5/10

Level	Recali- brated	100g Weight	10g Weight	1g Weight	100mg Weight	10mg Weight	DATE	TIME	ТЕСН	BP	LINE VOLTS	WET BULB	DRY BULB	% RH
Ke)	No	99,9992	999999	1,0000	0,1000	0.0100	11/22/16	848	Ame	28.53	121	54	64	45
Yes	No	99.9992	9.9999	1.0000	0.1000	0.0100	11/23/16	1740	ATM	28.44	120	53	64	47
Yes	No	99,9993	10.0000	1.0000	0.1000	0.0 00	11/24/16	1005	Am	2052	120	53	64	44
Yes	No	99,9943	9,99999	0.99999	0,1000	0.0099	11/25/16	740	ATM	28.32	118	52	63	46
Yee	No	99,9992	999999	1.0000	0.1000	0.0100	11/26/16	833	Am	28.22	121	54	65	48
Yer	No	99,9992	999999	1.0000	0.1000	0.0100	11/27-110	1413	ATM	28,11	119	51	63	42
Yes	No	99,9992	999999	1.0000	0,1000	0.0100	12/29 fix	1125	ATM	28.63	119	54	68	39
Yee	No	99.9992	9,9999	1.0000	0.1000	0.0100	12/30/16	12.07	ATM	18.56	121	49	61	40
Yea	Yee.	99.9992	999999	0.9999	0,0999	0.0100	11117	144)	ATTM	28.28	120	53	65	44
Ves	ND	99,9992	9.9999	1.0000	0.0999	0.0100	1/3/17	1200	E55	28.71	121	50	65	3
Yes	No	66.6663	9,9999	1.0000	0.0999	0.0100	14/17	1246	ATM	28.71	118	48	61	32
Yez	No	99,9943	9.9999	10000	0,1000	0,0100	1/5/17	1654	AM	28.63	120	51	40	32
Ye	No	99.9992	9.9999	1.0000	0.1000	0.0100	116/17	1930	ATM	28.62	121	50	64	34
Yes	No	99.9943	99999	1.0000	0,0949	0.0100	1717	1007	ATM	28.65	120	49	63	33
Yes	No	99.9992	9.9999	1.0000	0.1000	0.0100	1/8/17	1903	ATA	28.18	120	50	64	34
Yes	No	199.9991	9.9999	1.0000	0.1000	0.0099	19/17	930	ESS	28,19	119	50	64	34
Yer	INO	99.9992	9,9999	0.9999	0.0999	0.0100	1/10/17	1053	ATM	28,24	120	53	65	44
1×20	No	99.9993	9.9999	1.0000	0,1000	0.0100	1/10/17	1950	ATR	28.25	120	52	66	35
Yes	Yes	99,9992	9,9999	1:0001	0.1000	0.0099	1/11/17	1539	ESS_	28.38	119	46	60	30
Yer	Yee	99.9992	4.49.44	1.0000	0.1000	0,0100	1/12/17	1234	ATM	28.66	121	50	64	34
Jes	NO	99,9993	9.9999	0000	0.1000	0.0100	116/17	1531	Ess_	28.69	119	50	65	32
Yes	IN0	199.9992	9.9999	1.4449	0.1000	0,0100	1/20 /17-	1110	ATM	17.74	118	53	65	44
Yes	No	49,9993	9,9999	1.0000	0.1000	0.0100	1/22/12	924	ATTA	28.72	120	200 C	64	43
	- 						· · ·		1		ļ	· · · · · · · · · · · · · · · · · · ·		
							·							1
		•	1 .							1	1			

Woodstove Data Sheet 4-4 Scale QC Record Sheet Scale 2

From: <u>9</u> Through:

 Scale:
 Sartorius

 Model:
 CPA 2245

 SN:
 24850860
 24850860

Rev: 5/10

.

Level	Recali- brated	100g Weight	10g Weight	1g Weight	100mg Weight	10mg Weight	DATE	TIME	тесн	BP	LINE VOLTS	WET BULB	DRY BULB	% RH
Yes	No	99,9992	10,0000	1,0000	,1000	,0100	9/16	2145	ATM	28.	119	60	72	48
Cr.	No	99.9992	10.0000	1.0000	1000	200	9/17_	14172	AM	28,30	116	58	20	48
Yee	No	99,9991	99999	1.0000	,1000	,0101	9/18	1200	ATM	28.43	118	54	67	4
Yee	No	49.4442	4,4999	.9999	.1000	,0100	9/19	1048	ATM	28.50	120	56	67	49
702	No	49.4442	9.9999	1.0000	1000	,0100	91/19	2220	ATM	28.53	120	53	65	44
1es	NO	99.9991	9,9999	1.0000	0.1000	.0100	9/28	1413	ESS	28.44	120	54	65	47
Yes		11.9990	9.9999	1.0000	0.1000	0.0099	9/30	1457	ESS	28.33	118	60	72	48
17es	No	99 999 3	10.0000	1.0000	0.1000	0.0100	10/2	910	ATM	28.49	1.20	53	64	47
yee_	NO	199.9992	9.9999	1,0000	0.1000	0,0100	10'/3	929	Atm	28.35	120	52	63	46
Tes	NO	199.99992	9,9994	1,0000	0.1000	0,0100	10/8	1915	ATTM	28,32	120	56	67	49
1er		11.1173.	10.0000	0000	0.1000	0.0100	10/9	1057	ATM	28,49	120	56	63	46
<u>/04</u>		199 9992	10.0000	0,9994	0.1000	0.0099	10/15	1002	ATTY	28.19	120	56	67	49
12es	No	94.4442	9.4999	10000	0.1000	0.0101	10/17	1523	ATA	28.22	120	55	66	4B
Yes	NO	199.944d	10.0000	0.4999	0.1000	0.0100	NTIE	1938	ATH	28.55	120	56	68	46
Yea	INO_	49.992	9,9999	1.0000	0.1000	200100	10/19	ISHQ	AVM	28.72	119	SF	69	¥7.
Yes No	1 Jes	Queen	pres Mer	K- 1030 1	Visit (Neightv	10/20	1640	ATM	28.43	120			-
7.85	Jeo	99,999	9,4449	1.0000	0.1000	0.0100	000	1705	AM	23.45	120			-
1/12	yes.	94,94 43	99999	10000	0.1000	0.0100	10/92	1846	AM	28.46	19	56	67	49
1 YO	4No	94.9443	10.0000	1.0000	0.1000	0.0100	10/23	1400	ATM	28.48	120	56	67	49
Yee	No	999993	9.9999	10000	0.1000	0.0100	10/24	1742	47M	28.25	119	58	70	40
Yes	No	<u>9999992</u>	4,9999	10000	0.1000	0.0100	10/25	17.12	4TM	28.49	119	58	70	48
Yes	No	44.9992	10.0000	1.0000	0,1000	00100	10/26	1444	ATM	28.42	119	55	66	48
Yes	<u>'NO</u>	179,9992	10.0000	1.0000	0.1000	0.0100	μ/c	1132	ESS	28,35	120	57	109	410
1 Yes	1 No	199.999	99999	0000	0.000	0.0100	112	1803	Am	28,43	119	57	169	46
Yes		199, 4992	9.4499	0.4499	0.0999	0.0100	11/3	1028	AM	28.58	120	58	70	48
Y22	LI YOA	174 44 43	199900	AAAAA	DIMAN	ma tam	E or fat	in no	Arra.	AAMA	18-		-n_	1 120

Woodstove Data Sheet 4-4 Scale QC Record Sheet

From: <u>7/17/2016</u> Through: <u>9/15/2016</u>

Scale 2

Scale: Sartorius Model: CPA 2245 SN: 24850860 Rev: 7.15

Level brated Weight Weight Weight Weight Weight Weight Weight Weight BATE TIME TECH BP LINE WET	DRY BULB	% RH
VOLIS BULB	~~~~~	
Yes No 99,9993 10,0000 1.0000 ,000 ,000 7/17 1600 ATM 28 51 119 54	15	40
Yes Yes 199,9992 9.9999 1.0000 1000 .0100 7/18 17.57 ATM 28.49 118 51	GI	16
Yes No 99.9992 9.9999 ,9999 ,9999 ,0100 7/19 1506 100 2848 112 58	10	HE LE
Yes No 99,9993 900003 0,9999 . 0999 0100 7/20 1110 ATM 2850 119 51	19	175
Yes Yes 199,9993 10,0000 1,0000 0,0999 ,0/00 12/21 836 ATM 0859 110 55	11	10
Yes Yes 99,9991 9,9999 1,0000 0,1000 7/23 1200 AM 2859 20 56	66	78
Yes No 99.9992 9.9999 1.000 0.1000,0100 7/24 734 ATM 23.58 118 52	70	40
Ves NO 99.9991 10,000 0,9999 0,1000 0,0100 7/25 1324 F55 78.47 118 570	10	$\frac{16}{10}$
Yes No 199,9992 9,9999 0,9999 0,1001 0,0101 8/2 1345 ESS 2832 117 55		16
120 No 99.9991 9.9999 1.0000 0.1000 0.0100 8/4 1344 ATM 28.47 116 56	00 (.]	13
Yes No 99.9991 9.9999 11.0000 0.1000 0.0101 3/6 1117 ATM 2840 120 56	64	40
Yes No 199991 199999 100000,0000000008/7 100 ATM 28.37 121 54	65	
105 NO 19.9992 10.0000 0.9999 0.1000 0.0101 8/9 1045 FSS 78.47, 170 53		10
Yee No 99.99992 9.9999 0.99999 0.1000 0.0101 8/14 1613 Non 2224 120 56	17	4/
Yes No 99,9993 9,9999 10000 0,1000 0,0100 8/17 1336 ATM 1840 112 52	64	44
Yes NO 99,9993 9,9999 1,00000,10000001mt 8/18 1244 ATT 7845 110 54	70	10
Ver No 79.99929.999990 10000 0100 8/19 1652 ATM 3849 112 50	<u> </u>	48
Vea No 199,9992 9.9999 1,0000 0,1000 0,0100 8/24 851 111 28 42 120 55		40°
Yes No 99,9992 99999 0,9999 0,1000 0,0100 0/31 545 ATM 2842 119 59	<u>let</u>	72
Ves No 99,9993 99999 0,9999 0,1000 0,100 9/3 103, ATM 18 46 118 50	+0	18
Yes No 99.9992 10,0000 0.9999 0,1000 0,0100 9/4 0730 AT 2842 120 54	47	18
Yes NO 199.9992 99999 1.0000 0 1000 0 100 9/7 1721 ATM 28 40 40 40	10	47
Yes No 199.9992 99999 10000 0.1000 0.0100 9/3 617 ATT 285-2 110 57	101. M-	40
Ves No 99.9993 10.0000 1.0000 0.1000 0.000 9/13 554 111 29 (1 120 53	<u> </u>	48
Vie No 199999929999911,0000 0.1000 0.0100 9/15 2058 Am 2847 120 54	6-5	1T

Miscellaneous Test Data Woodstove Data Sheet #8

a≓. N

ł

Unit: 094.	mure
Run # 594	e
Date: 1/9	17
Technician:	TM, ESS
WST6-Form1	, Rev 6/11

Useable Firebox Dime	ensions: <u>See QC Se</u>	<u>ection</u> Useable V	olume: N/A	ft ³	
Dilution Tunnel Draft	(If Applicable):Sta	art: <u>, 00</u> 0	Stop:, 001	• Avg: ,	000 in. H ₂ O
Test Chamber Air Velo	ocity: Start: <u>>0</u>	<u> 45</u> Stop:_>	0. <5 Av	g: <u>>0, (5,0</u>	ft./m.
Wet Bulb/ Start: W	B: <u>49</u> ⁰F DE	3: <u>60</u> °F %	% Amb Moistur	e: 0.80	%RH: 43.5
Dry Bulb Stop: W	в: <u>54</u> °F DB	: Le9 °F 9	% Amb Moistu	re: 0,90	%RH: 87.9
X Ambient Moisture(%Vol.) = <u>0.85</u>	_% X Rela	tive Humidty (%RH) = <u>40.</u>	25%
Empty Stove Wt:	512.6 W,	10 C Gas for	1bs. 52	3.2w/c	Gas Probe
Empty Stove Wt with S	Stack (inc oil seal)	Wet: 491	<u>1. (</u> lbs.	Dry:	1bs.
Empty Stove Wt with S	Stack and Ash	Ash:	lbs.	Total:	lbs.
Kindling Wt. Paper:	lbs.	Wood:	lbs.	Total:	lbs.
Pre Burn Fuel Wt				Total:	lbs.
Total Kindling and Pre	Burn Fuel Wt				lbs.
Coal Bed Wt.: Range(-)	lbs	. Actual:	lbs.
Allowable Amount of (^T herecal That Can	Ro Domourade			
	Inarcoar That Can	De Kenioveu.	~		
Coal Bed Wt. Range		+	/2].25 =		lbs.
Coal Bed Wt. Range	Upper Wt.	+Lower Wt.	/2].25 =		lbs.
Coal Bed Wt. Range	Upper Wt.	Lower Wt.	(/2).25 =		lbs. lbs.
Coal Bed Wt. Range	Upper Wt. lbs. Ra 75 x 1.5 x 5" Spac	Lower Wt.	(2).25 =	Pcs	lbs. lbs. lbs.
Coal Bed Wt. Range	Upper Wt. lbs. Ra 75 x 1.5 x 5" Spac 	Lower Wt. ange: eers):Pcs	/2).25 = lbs. Actual:	_ Pcslbs	lbs. lbs. lbs. %
Coal Bed Wt. Range Test Fuel Wt.: Ideal Test Fuel Size (pcs.) (.7 2 x 4's x 4 x 4's x	Upper Wt. lbs. Ra 75 x 1.5 x 5" Spac 	Lower Wt. ange: eers): Pcs	/2).25 = lbs. Actual:	_ Pcslbs	lbs. lbs. % %
Coal Bed Wt. Range Test Fuel Wt.: Ideal Test Fuel Size (pcs.) (.7 2×4 's x 4×4 's x 13, 355	Upper Wt. lbs. Ra 75 x 1.5 x 5" Spac 5 J ka	+Lower Wt. ange: eers):Pcs Pcs	/2).25 = lbs. Actual:	_ Pcslbs	lbs. lbs. % %
Coal Bed Wt. Range Test Fuel Wt.: Ideal Test Fuel Size (pcs.) (.7 2 x 4's x 4 x 4's x 13, 3 55 Est. Dry Burn Rate(Kg/	Upper Wt. lbs. Ra 75 x 1.5 x 5" Spac 	Lower Wt. ange: eers):Pcs Pcs Pcs	(-2).25 = lbs. Actual: 	Pcslbslbslbslbs	lbs. lbs. % % %
Coal Bed Wt. Range Test Fuel Wt.: Ideal Test Fuel Size (pcs.) (.7 2×4 's x 4×4 's x 13, 355 Est. Dry Burn Rate(Kg/	Upper Wt. lbs. Ra 75 x 1.5 x 5" Spac 5 J ka /Hr.) 31, 2 2.204	Lower Wt. ange: eers):Pcs Pcs Pcs 21.2_x46	(-2).25 = lbs. Actual:) X <u>60</u> 360	Pcslbs lbs 2 2 Dry Burn	lbs. lbs. % % % % % %
Coal Bed Wt. Range Test Fuel Wt.: Ideal Test Fuel Size (pcs.) (.7 2×4 's x 4×4 's x 13, 355 Est. Dry Burn Rate(Kg/ Est EPA Heat Output (H	Upper Wt. Upper Wt. 1bs. Ra 75 x 1.5 x 5" Spac " 5 J ha (Hr.) 31, 2 2.204 HO _E)(Avg BTU's/H	Lower Wt. ange: eers):Pcs Pcs Pcs 21.2_x46 Ir)(19,140) X 2.	(-2).25 = 1bs. Actual: bs. Actual: bs. <u>Actual:</u> bs. <u>Actual:</u>	Pcslbslbs lbslbs Dry Burn 33	lbs. lbs. lbs. % _%
Coal Bed Wt. Range Test Fuel Wt.: Ideal Test Fuel Size (pcs.) (.7 2 x 4's x 4 x 4's x 13, 3 55 Est. Dry Burn Rate(Kg/ Est EPA Heat Output (H	Upper Wt. lbs. Ra 75 x 1.5 x 5" Spac 	+ Lower Wt. ange: eers): Pcs Pcs $- (31.2_x, 46)$ Hr)(19,140) X 2.	$\frac{2}{2} \cdot 25 = \frac{25}{2} \cdot 25 = \frac{25}{2} \cdot 25 = \frac{25}{2} \cdot 25 = \frac{25}{2} \cdot 25 = \frac{225}{2} $	Pcslbslbslbs lbs 2 Dry Burn 33 EPA Heat Outp	lbs. lbs. % % 2259 Rate (Kg/Hr) 231 put (HO _E)BTU's/Hr

OPERATION OF THE OPTIMUM DENSIFIED FUEL LOG STOVE.

The Optimum was operated according to the manufacturer's written instructions. (See the second page in the Manual Section.) While the primary air control (PAC) was adjusted for each test segment as per the written instructions, the adjustments had little impact on the dry burn rate (DBR).

COMMENT:

As noted in the cover letter to Dr Sanchez in the front of this report, this unit is the first unit that burns densified fuel logs to be EPA certification tested and that it combines features found in both wood and pellet stoves, making the unit an "outside of the box" hybrid". That in and of itself creates some issues for those conducting the tests because the unit is batch, gravity fed with a combustion air fan that has only 1 speed.

What follows is basically a repeat of the information provided under Note 1 on the first page in the Data Summary Section that is titled

WOOD BURNING HEATERS UNIT: 509 OPTIMUM Densified Fuel Log Stove

Test Method 28R for Certification and Auditing of Wood Heaters

SUMMARY RESULTS-DENSIFIED FUEL LOG HEATERS

There are no test runs in Dry Burn Rate (BDR) Categories 1 (<0.80 kg/h) and 2 (0.80-1.25 kg/h) because the unit's dry burn rate is controlled by its primary air control and combustion air fan, the density and size (diameter) of the fuel logs themselves, the amount of fuel remaining in the feed tube at any given time and how the fuel logs "settle" in the feed tube. The logs are gravity fed and logs can "warp" due to heat and moisture content and hang up in the feed tube which slows the The weight of the logs left in the feed tube affects the DBR. feed rate because the weight pressing down from above is what causes the burning end of a log to disintegrate into smaller pieces, i.e., the more weight, the faster the disintegration, which allows more unburnt fuel to drop into the combustion chamber. The DBR data reflects this operating scenario. When the "High" burn test segment was started, the unit had been burning for a little over 75 minutes (~15 minutes for ignition and 60 minutes for Preburn). A fuel log was added at approximately 5 minutes into preburn, so at the end of the

"High" burn segment there was enough room in the feed tube to add 2 logs (15.2 lbs.). The DBR for the 60 minute "High" burn segment was 2.319 kg/h with a partially full fee tube. The DBR for the 120 minute "Medium" burn segment was which was started with a full feed tube was 2.899 kg/h. Even though the Primary Air Control (PAC) setting had been reduced from the "High" to the "Medium" setting, the DBR increased. That clearly shows how the amount of fuel in the feed tube can impact the DBR and that the amount of primary air being pulled through the unit really The unit burned 13.5 lbs. in the 120 does not impact the DBR. minute "Medium" burn test segment. At the end of the Medium burn segment, the PAC was adjusted to the Low burn setting and 1 fuel log (8 lbs.) was added at 20 minutes into the "Low" burn test segment. The DBR immediately increased due to the extra weight in the feed tube and then slowed as the amount of fuel in the feed tube decreased. (See Data Sheet #14, pages 4 of 7 and 5 of 7.) Additional fuel (3.4 lbs, approximately ½ a log, was added at 312 minutes because the DBR had dropped down to 0.1 1b. / 5 minutes and we were worried that the fire might go out. Again, as soon as fuel was added the DBR increased, but the increase in the burn rate was not as great as when 2 logs were added, again showing how the amount of fuel in the feed tube impacts the burn rate. (See Data Sheet #14, page 6 of 7.) The wild swings in combustion gas (CO2, O2 and CO) concentrations also confirm that the amount of fuel in the feed tube is what really controls how this stove performs. See Data Sheet #14, p4 of 7, at 205 and 210 minutes and look at the DBR and CO2 and CO concentrations. At 205 minutes the DBR was 0.1 lb and the CO2 and CO concentrations were 11.21 and 0.71% respectively. At 210 minutes the DBR was 0.6 lbs. and the CO2 and CO concentrations were 11.76 and 0.85% respectively. Huge change in burn rate, but no change in gas concentrations, due to no change in fan In both instances, the unit was burning the crumbled up speed. portions of a fuel log. The only difference was in the amount of crumbled up fuel log that was available for combustion. Dropping a new fuel log into the feed tube caused the bottom of the burning fuel log to really crumble. When fuel is added the CO2 and CO concentrations initially doesn't change much. Yet later at 215 minutes when there is still a substantial amount of crumbled up fuel log burning plus some new unburnt fuel now available for combustion, the CO went up because now there was not enough 02 present in the right location for clean combustion. You do not see these kind of wild swings in DBR or gas concentrations in a typical pellet stove because the controls simultaneously and automatically adjust both the combustion fan speed and the feed rate.

So this unit is really a Single Burn Rate Appliance (SBR) with a burn rate that varies due to the amount of fuel remaining in the feed tube. Adjusting the PAC really has little or no affect on the burn rate because the unit uses a combustion air fan to pull the combustion air through the unit and closing the PAC creates a smaller orifice, but the fan just pulls the air through the orifice faster. Unlike most pellet stoves where the speed of the combustion air fan is reduced as the fuel feed rate is reduced, the combustion air fan speed on the Optimum remains the same no mater where the PAC is set.

..--..

		Wo Wo	od Density D odstove Test	eterminat Data Shee	ion t #11	Unit: Run#: E Date: 1 Technicia	otimum PA-1 19117 n: ATM	
								Rev 5/10
	Wood Piece:	Nominal D	imensions:		X		<u> </u>	
	Depth (D):				10.11 APR-10-1		cm	
	Width (W):					<u></u>	cm	
	Length(L):		CIII	Longth	$\overline{\mathbf{v}}$ –			
			Cm	rengu	I A		0111	
-			cm	. Vol	ume:		cm ³	
• •			(D	x W x L)				
	Room Tempe	rature:	°F Co	rrection Fa	ctor:			
	Meter Readin	igs Corrected	for temperatu	ıre: Yes	No			
	Note: Record	d Moisture N	leter readings	to the near	est 0.5% or 0).1%		
÷			Uncor	Cor	Avg %	Moisture (Di	ry)	%
		Гор:		%				
- ·	H	Bottom:	· · · · · · · · · · · · · · · · · · ·	%	Avg %	Moisture (W	et)	%
	5	Side:		%	Scale:	Leveled In	0	ut
1	-	$\overline{\mathrm{X}}$:		%	,	Zeroed: In	0	 ut
	L							
	Wet Weight:		g Dry Weig	ht:	g		dried	erum bed up,
	% Mo	isture Dried I	Basis:	%			Choose	dup pcs
		([1 -	Ory Wt/Wet	Wt)] X 10	0)		ola	tot fiel
	Density =		g/	c	$m^3 = $	g/cm	3 DAM	L.
		(dry wt)	(vol	ume)				
		Da	<u>te</u> <u>Ti</u>	\underline{me}	Temp			
	Into Di	ryer $\frac{1}{1/10}$		1200	146	°F		
•	Out of	Dryer 1/19		Deriver 24		Ϋ́Ε		
		(1711)		Dryer: 24	nrs.)	ç	the All	9 N
	Pellet Fuel Mc Tare Beaker W	vt. <u>15</u>	nt Determintat 77	tion g	Log Petter Log Petter Pellet	Name: N. Manufacture Grade: A	<u>Telsha E</u> er: <u>N . Tel</u> r/A	the Thergy
	Wet Wt:	and	g- ا	· 7	g =	204.3	g	
		Gross Wet W	/t. Tare Beal	ker Wt.	Net W	Vet Wt.		
,	Dry Wt:	XUBS	gう ひ	· <i>T</i>	g =		g	
e.	0/ Maintan 117	Gross Dry W	t. Iare Bea استا	aker Wt.	Net L	ory wt.		
	70 WIOISTURE W		Not Dury W	ed 1 It /Not Wat	<u> </u>			
	157	Γ1 Γ1	- (net Dfy W	LANCE WEL	νν ι. <u>/</u>] Α 100			

MYREN CONSULTING, INC. ASTM E2779 Densified Fuel Heater Eqns Forms/ Densified Fuel Stoves/ Eqns. Rev 6. 4.20.17 P. 1 of 2

Unit: Optimum	
Run #:	
Date: 1/9/17	
Tech: <u>A.T. Myrun</u>	

ASTM E2779 EQN 1: Kilograms/ Pounds of dry fuel burnt, db (Revised)

Note: EQN 1 assumes that no fuel will be added to the unit while it is being tested. That was not possible with the Optimum because of the unit's dry burn rate, i.e., the stove will run out of fuel and go out if one does not add fuel to the unit sometime during the 6 hour integrated test. So the M_{Bbd} (the dry mass of the fuel burnt) equals the total of the pounds of fuel burnt during each 5 minute sampling interval, in this case 31.2 lbs., minus the moisture content, in this case 5.629%

 $M_{Bdb} = (31.2)(100)/(100 + FM)$

FM = average fuel moisture content of test fuel, % wet basis, 5.629%

 M_{Bdb} = weight of the fuel burned during the test run, dry basis, kg(lb).

 $M_{Bdb} = (31.2)$ lbs)(100)/(100+<u>5.629</u>) = <u>29.5373</u> lbs / 2.2046 lbs/ kg = <u>13.398 kg</u>

ASTM EQN2: Kilograms/ Pounds of Dry Fuel Burnt During a Test Segment (S1), db

Note: Again, do to the way this stove burns and the need to add fuel at some point (or points) during a test run, so the M_{Bbdl} (the dry mass of the fuel burnt during each sampling interval) equals the total of the pounds of fuel burnt during each 5 minute sampling interval for each test segment minus the moisture content, in this case 5.629%

Masidb = (Mssiwb - Msesiwb)(100)/(100+FM) (Revised)

i = test run segment in Accordance with 9.4 Table 1.

Test Segment 1: 0-60 minutes: $M_{BS1db} = (\underline{5.4} \\ Ibs.)(100)/(100+\underline{5.629}) = \underline{5.112} \\ Ibs/ 2.2046 \\ Ibs/kg = \underline{2.319} \\ kg$ Test Segment 2: 60-180 minutes: $M_{BS2db} = (\underline{13.5} \\ Ibs.)(100)/(100+\underline{5.629}) = \underline{12.381} \\ Ibs/ 2.2046 \\ Ibs/kg = \underline{5.282} \\ kg$ Test Segment 3: 180-360 minutes: $M_{BS3db} = (\underline{12.3} \\ Ibs.)(100)/(100+\underline{5.629}) = \underline{11.645} \\ Ibs/ 2.2046 \\ Ibs/kg = \underline{5.282} \\ kg$ MYREN CONSULTING, INC. ASTM E2779 Densified Fuel Heater Eqns Forms/ Densified Fuel Stoves/ Eqns. Rev 6 4.20.17 P. 2 of 2

Unit: Run #: Date: Tech: VALA

ASTM EQN 3: Average Dry Burn Rate BR (DBR)

 $BR (DBR) = (60(M_{Bdb}))/\theta$

BR (DBR) = Average dry burn rate over the full integrated test run, kg/h (lb/h), and Θ = total length of full integrated test run, min.

BR (DBR) = (60(<u>13,398 kg)</u>/<u>360</u> = <u>2,233</u> kg/h

ASTM EQN 4: Average Dry Burn Rate (DBR) over a Test Segment i, kg/h(lb/h)

BR (DBR)_{si} = $(60(M_{Bidb}))/\theta$

BR (DBR)_{si} = Average dry burn rate over test run segment i, kg/h (lb/h), and Θ_{si} = total length of test segment i, min.

Test Segment 1: 0-60 minutes BR (DBR)_{s1} = (60(-2,319 kg))60 = 2,319kg/h Test Segment 2: 60-180 minutes BR (DBR)₅₂ = (60(5.107 kg)/ 120 2.8985 = ka/h Test Segment 3 : 180-360 minutes BR (DBR)₅₃ = (60(-5.282 kg))180 1.7607 = ka/h

		:												۰.		· · · · · · · · · · · · · · · · · · ·
Preb	urn Sta	rt Wt 🐂	-	Lbe IIn	e ziwymeno zistrije	lha]	Pre B	urn Data	U	nit: <u>Optio</u>	morn		Date:	19/17
Test	Start W	t Range				_10s. lbs.		R	ecor	a Sneet #1	IS Ri Pa	in: <u>EPA</u> ige: 1 0	⊥_Te of \	chnician WST2.	(s): <u>/{7</u> .Form 1	M_{1ESS}
Baro	. Pressu	ire <u>28,</u>	1% T/C#-	_"Hg 1	2	3	4		E .	(-	······································				0, Kev 0/11
D.C.	() (B)	Scale	Burn		Stove	Left		R	<u> </u>		/	8 2 nd Duran	9	<u> </u>	20 Clock	Hot Box On
	ute/O	Weight	Rate	Stack	Тор	Side	Bac	k s	Side	Bottom	Firebox	2 Burn Catalytic	Temp	Static	0,1	Comments
0	1020	526.7	0.0	263			Contractor (101	-,047	301	Primary Air Set At ON H
5	25	534.2	* - 5 -	264	ALC	ed 7	.8	lbs	6	4 Ini	ns. w	Noi	101	048	301	Secondary Air Set At \mathcal{Y}/\mathcal{A}
10	30	533.8	.4	269	pre	siens	San Gart		1000 Carth		Constant of the second s		61	048	207	Fan: ()
15	35	533.0	.8	276		8 A.4	- joj o		rei mat Rallis -	i di seconda			lal	- 049	318	Tunnel on at: 1041
20	40	532.4	16	286		.			t ya ta wa wata	100	4		61	090	332	Buckets Iced
25	45	531.9	.5	292		A STATE	1			9 9 7			101	051	340	Analyzers Spanned
30	50	531.6	.3	296		, percent	a de la como		alar tahun				62	- 1052	345	Pumps Turned on at: 11117
35	55	530.9	<u>ר</u>	302			-			a circular de la circ	- Sills	1 Star Windsheem	62	053	352	
40	1100	630.4	.5	307			U To rations		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	th Rear	10 stores	n de la constante de la consta	62	- 054	359	
45	05	529.9	.5	311						- and in the second	1		102	-1054	304	
50	01	529.4	.5	316		4 V.4	ir pakasili (p		2 1 -1	al particular and all	4 11 12 12 12 12 12 12 12 12 12 12 12 12	C	102	054	370	
55	15	528.7	.7	322		· · · · · · · · · · · · · · · · · · ·	i ann Mary			- La contrato	A week and		62	055	379	Tunnel ∆P
\geq	\leq					Standarder.			- Limper	-	سترجعهم ومرينة			1.00 m	$\mathbf{\tilde{\mathbf{X}}}$	Probe In Tunnel
60	1120	528.7	.5	327			**************************************			Non-Aufler and	11-10-14 mary		62	-056	382	
65	<u>.</u>										(a-4)-1-12					
70	<u> </u>	<u>`.</u>	<u>_</u>						The state of the s			, and the second				
75									1	¥		4-474°, - 10				521.4-584.2 = 7.8166
80			 								<u> </u>					
85					,											
90		· · · · ·	<u> </u>													
95 100	· · · · ·															
100	· · · · ·	· · · ·														
110											,					
115												<u></u>				
112	l				L								\			

	Myre	en Cons	ulting In	c Data S	heet #14	P <u>1</u>	of	Unit	OPT.	MUI	<u>m</u>	D	ate_1	19.1	17	_Run <u>+=</u> (PA 1		
ľ	Test		• <u> </u>	<u>., 7</u>		<u>//e</u> t	Sarometr	ic Pressure	28,1	7	<u>"Hg</u>	Gas Flo	w@1.5	5" Tech	nician(s)	ATM,	555		
ł	E/T	B	Scale	Lbs.	Burn	CO2	CO ₂	O ₂	CO	СО	Gas	Tom	Stack	-41.			T3	stack	GAS
· . /	Min		W1.		Kate	V.	% 0	%	V.	%	Bal	#1	P SU Pres	ssure	Opacity	ſ	Cond Not 地的	H90	TRAIN
1	0	1120	528.2	2 21,6	0.0	.434	10.89	10.00			99.0	327	7 0	56			90	382	-10.2
6	05	25	527.1	030-10	م.	,508	12.72	8.00	,43	.43	29.6	33	a - a o	57	C		40	3910	-10.5
/	10	30	526.0	7 29.4	.7	,464	11.63	9,09	.43	43	27.0	347	> -+ 0	57	۲ ۹		39	40	-0.5
	15	35	526.1	1 29.44	.5	.435	10.91	9.97	.11	.11	99.2	- 342	20	57	V I		28	403	-10.5
	20	40	525 .	8 23 8	ها,	.417	10.46	10.43	.09	,09	116.3	342	2-00	57	11	<u> </u>	28	407	-10.5
	25	45	525.3	3233	.5	395	9.92	10.98	.08	.08	123.9	24	2 - 0	51	11		28	101	1010
	30	50	524	727	.6	· 389	9.77	11.12	.10	.10	97-	241		50	**		29	<u>Hon</u>	-70.5
2	35	55	524.1		.ك	. 427	10.71	10.14			12.0	241			11	<u> </u>	20	200	~U.3
	40	1200	523.8	3 26.8	.3	368	9.24	11.164	. 12	.17.		225	2 - 0	<u></u>	<u></u>		20	<u>271</u>	-10.3
\sim	45	05	523.5	26.5	.3	358	9.20	11.24	20	20	450	221		20			20	<u>278</u>	-10.5
	50	10	523.2	-21.2	.3	. 271	6.83	12.93	21	21.	19 0	254					30	<u>915</u>	-10.5
	55	15	523.0	> 9.0	.2	275	1,93	1273	-20-	100	12/	22		27			<u> 38 3 (</u>	<u>389</u>	-10,5
ſ	Total				1 400			12112		105	12.0	22					38	381	-10.5
F			<u>.</u>	P		······································						1404	1 Cu	<u>del</u>					
ſ	Ti	ime	Тор	Left	Back	Right	Battom	Firshor	E- 2-				C Gas	C Gas	Part	<u> </u>	TZ	<u> </u>	$\frac{\tau 3}{0}$
┢	E/T	~	P		Back		Dottom	FILEDOX	FT. 200			ni.	Box	Impin	Filt.	Cond.	Filter	cond.	Filter
┟	Min	0	#2	#3	#4	#5	#6	#7	#8	#	#9 	10	#11	#12	#13	#14	#15	#16	#17
┢	0	NZO					1	1	1	ما	21	50	226	30	76	47	74	52	70
-	05	25							and the second se	6	4 1	05 2	20	31	77	36	74	43	70
┝	10	30							T/A/Relator	6	S In	24 3	219	30	78	37	75	47	
Ļ	15	35				- the second			Maria .	6	5 K	ا مار	219	30	78	38	-78	41	1-5-
	20	40	and the second s							10	6 10	575	220	31	1-79	38	79	40	72
L	25	45			4					to	5 11	18 7	21	31	-79	28-	8		10
L	30	50		C. Andrews			-services	-	and the second s		8 10	57 5	77	31	185	28	81	170	
	35	55				CHILDREN II			<u>```</u>	16	8 11		272	27	15-	29	81		
	40	1200				્યુ	1	3		6		57	174	27	t S	20	81	40	
	45	05								<u>–</u> – –		57	7.74	27	8	20	87		/0
	50	10								\exists		5	272	20	120-	27	87	170	
	55	15								1-7		5	222	32	180	27	82		77
	Total									10		-+-		06		<u>-3/</u>	06		17
-		£	<u>.</u>			- <u> </u>		1	L	<u>_ NOC</u>	21				1	1	1.5		1

		X) j	
	Myre	n Consi	ulting Inc]	Data Sh	neet #14	P 2	of _7	_Unit	Ptim	um		Da	ite <u> /</u>	9.11	<u> </u>	Run EP	Al		
	Test l	End Wt	. 523,7	<u> </u>	<u>ΔΤ Ν</u>		arometri	c Pressure	28.11	6	_"Hg C	Fas Flov	<u>w @ 1.5"</u>	Technic	<u></u>	ATM, E	<u>></u>	Share K	GAC
I	Ti	me	Scate 8	Lbs.	Burn	CO ₂	CO ₂	O ₂	со	со	Gas	Temp	Stack Stat	ic Op	acity T	in the co	Not Not	cs-C1	TEAN
	E/T Min	Ø	SWP	Left	Rate	V.	%	%	<u> </u>	%	Bal	#1	Press	ure .		FIF. t	<u>=18</u>	#20	VAC 10
U	60	1220	528.1	25.8	. # *	.240	ماه. ما	14.39	.98	<u>,98</u>	(6.2)	321	-•09	51 -		NET LOSS	50	319	-10.1
	65	25	537.6	25.3	.5	. 566	14.17	6.39	.87	.87_	(6.3)	318	05		11 57	2.9-538	<u>- 25</u>	<u>315</u>	
	70	30	537.0	247	m.Le	,506	12.67	8.24	. 06	ماه,	211.2	320		54			20	574	
	75	35	536.4	24,1	ها.	, 455	11.41	9.51	.05	105	2281	320	<u> </u>	54 1		e 61 mins	20	<u> 3/3</u>	
	80	40	535.7	23.4	.7	. 428	12.74	10,04	.33	.33	32.5	32	05				<u>38</u>	31/	-11.0
	85	45	535.1	\mathcal{D},\mathcal{G}	ى.	. 383	9.62	11,28	.08	<u>80,</u>	120.2	-324	05	<u>'4</u>	<u> </u>	<u></u>	<u> </u>	270	
	90	50	534.5	22.2	.6	. 381	9.57	11.32	, 10	<u>, ID</u>	95.	1 32	5 02		×	<u>.</u>	<u> </u>	<u>0/ C</u>	
	95	55	533.9	21.6	<i>.</i>	. 395	9,92	10.98	80,	80,	1239	32	20	54			<u></u>	<u>311</u> 277	-11.0
	100	1300	533.2	20.9	.7	.473	11.85	9.02	13	13	9 <u>1,Z</u>	32	05	54			<u> </u>	278	-11.0
	105	05	532.7	20 H	.5	<u>· 453</u>	11.30	9,49	1.18	81,	631	32	0	~/ 1			<u></u> 28	250	-11.0
	110	10	532.2	199.9	.5	.430	10.94	9,95	.10	10	109.4	30	>0	54			<u></u> 28	27A	
	115	15	531.7	NºA	.5	. 389	19.77	11.12	<u>↓ · N</u>	11	122.0	51		55			20		- 11.0
	Tota	l					<u> </u>		ļ		<u> </u>	1005	وال-ال				77	- 72	T3
	-		TT	•	<u> </u>		1					T-1	C Gas	C Gas	Part.	Part.	Parti	Pert	fart.
	1	lime	Тор	Left	Back	Right	Bottom	Firebox	Fr. 2n		<u>чтр</u>	·	Box	Impin	Filt.	Cond.	Filte	- core	L. FITT
	E/T Min	Ø	#2	#3	#4	#5	#6	#7	#8		#9	#10	#11	#12	#13	#14	107	#16	1 24 17
	60	1220		1	· ·		1	. 1			20	105	222	34	18	3/	04	40	1/
	65	25	et and for a		4	ŧ.						06	222	33	77	37	02		5
	70	30									73	106	22	33	/0	$\frac{27}{20}$	101		80
	75	35	i Conta						_ _ ·		73	106	221	22	18	121	02		81
	80	40	i ye iley						_		73	106	221	20		29	87		81
	85	45		-	3	1					72+	100	211	20		29	02		81
	90	50	- Levy Store	141 × 17		<u></u>			2 		<u> 4</u>	100	26	26	146	129	02		
	95	55						and it is	_		74	105	111	22	1-12	29	1 82		181
	100	1300					<u>}</u>		_		/4	100	24	22	10	29	87	4	81
	105	05								<u> </u>	<u>74</u>	100	240	22	-10	29	87	41	80
	110	10	_		_ _				<u>_</u>			100	274	27	78	1 24	82	41	180
	115	5 15		<u> </u>	_					-+	<u></u>	100	467	1	10			_ <u></u>	
	1 To	fal		1	1						011			<u> </u>		<u> </u>	شبىل_		

1

i.

•

	÷	-) 2	
Myre	en Cons	ulting Inc	Data Sl	heet #14	P 3	of 🕝	Unit ()pt:m	um			Date	1 9.1	17	Run Fe	'A I		
Test	End Wt	t. <u>523</u>	M	ΔΤ	<u>NTR</u> B	arometri	ic Pressure	28.1	6	"Hg	Gas I	- Flow @ 1.	.5" Tech	nician(s)_	ATM,	ESS		
Т	ime	Scale	Lbs.	Burn	CO ₂	CO	0,	со	со	Ga	s	Stack			Ť	3	stack	GAS
E/T Min	Ø	WT.	Left	Rate	V.	%	%	V.	%	Ba		emp S #1 Pr	Static (essure	Opacity	هن لو	18 18	stes C	VAC
120	1320	531.1	19.8	.9	, 415	10.41	10,45	مار.	14	65.	1 32	23	054	C	•	38	379	-11.0
125	25	530.6	183	່າງ	. 438	10.98	9,44	1.03	1.02	5 10,	7 3	25	054	11		38	381	-1),0
130	30	530,0	17.7	و.	.443	11.11	9.72	.22	,22	. 50,	5 32	5	055	ω	•	38	383	-11.0
135	35	529.3	0.71	.7	.547	13.69	6.82	.85	.85	16.	3	<u>17</u>	054 -	اے - ویون		<u>38</u>	388	-11.0
140	40	528.6	163	、7	. 508	12.72	7,79	.86	.86	14.	8 3	31	055	<u> </u>		38	392	-11,0
145	45	528.1	158	ທ	435	10.91	9,90	,25	.25	43.	63	340	056	**		38	396	-11.0
150	S	527.6	15.3	, Š	. 479	12.00	8.34	1.20	1.20	0.01	<u>2 33</u>	370	055	**		38	400	-11.0
155	65	527.0	147	ه.	. 428	10.74	10.08	125	.25	42.	9 33	38	055	uisps		38	402	-11.5
160	1400	526.6	143	.4	. 417	10.46	10,19	157	.57	18.0	4 3	39	056	C		38	404	-11.5
165	05	526.1	13.8	.5	.381	10,19	10.69	.12	12	- 84.	<u>9 3</u>	<u>39</u>	056	n		<u>38</u>	402	-11.5
170	10	525.5	- 13.2	.6	. 403	10,11	75.01		1.4	92.	0 3	38	056	11		38 🗉	400	-11.5
175	15	524.8	125	.7	. 319	8.03	12.85	.3	.13	> 61.	7 3	35 /	056	< IX		38	395	-11.5
Tota	ıl	Ţ		, í							Be	R9) (1062					
										-				TI		TZ	72	T3
Т	lime	Тор	Left	Back	Right	Bottom	Firebox	Fr. 2n	d .	Amb	Tnl.	C Gas Box	C Gas	Part. Filt.	Part. Cond.	Part Filte	· Part.	Part . Files
E/T Min	Ø	#2	#3	#4	#5	#6	#7	#8		#9	#10	#11	#12	#13	#14	\$1.5	3416	1217
120	1320	<u></u>		1		į	4 - 10	4 17	-	74	106	224	33	78	39	8Z	42	80
125	25	÷ II ï	-	شد تقالم ، جزرو		and the second	an a	dan da	•	74	فالا	224	33	78	39	82	42	81
130	30	tulur tek	-	1. 	Contraction of the second	م معالم الم	and and a second se	49 - L	-	74	105	225	- 33	78	39	82	42	81
135	35	1994 - A	. j		1. angination	5.00 × 4			-	74	107	225	33	78	39	82	42	81
140	40	a the second	and the second second	N i∰trad	n, takis voorte	Clippe of	an a		-	74	107	226	33	78	4D	8Z	42	81
145	45		Marca a	* 14 m vt		rian a sea		-	-	74	107	227	33	78	40	82	42	8)
150	50	- All Andrea	"(t'th A city)	1988. 1996)	· · • • • • • •	· · · · · · · · · · · · · · · · · · ·	وحوالياته بر	-	-	74	107	227	33	78	39	82	42	81
155	55	1			(in the second sec	1	n. Antimatica	f	-	23	107	228	33	78	39	82	42	18
160	1400	a s a s a s a s a s a s a s a s a s a s	وكالتوريق		1 Page 1 Pag		tagika ay Wa	u čelou	· ·	74	108	22.8	33	78	39	8Z	42	81
165	05	تحلط محلا		۹۰ بنما لدارین	(land			a ya Kata		23	107	229	33	78	39	82	42	81
170	10	1. Act Dise	and the second second	19 July 19	4	e. e		'		73	107	229	33	78	39	82	42	81
175	15	a second		ţ,						73	106	228	33	78	39	82	42	81
Tota	al			1					1	8847								

•

Myre	n Consi	lting Inc l	Data Sł	neet #14	P 4 of	7	Unit_ <i>OQ</i>	timu	M		Dat	ie <u>/</u> 9	1.	7	un <u> </u>	<i>f</i> I		
Test F	a Const Cnd Wt.	533.	1	ΔΤ Ν	B	arometri	ic Pressure	28.1	7	"Hg	Gas Flo	ow @ 1.5'	' Technie	cian(s)	ATM	EGS		<u> </u>
Ti	me	Seele	Ibe	Burn	<u> </u>	CO.	0.	co	CO	Gas		Stack			T	3	Stack	GAS
E/T	Ø	WT.	Los. Left	Rate	V.	%	%	v.	%	Bal	Tem #1	p Stat	tic Op sure	acity	Furned Cia	から そう よう しょう しょう しょう しょう しょう しょう しょう しょう しょう しょ	世20	VAC
Min 180	1420	574.6	12.3	.2	,232	5.86	15.00	.15	15	39.1	32	905	5 (Bu	38	386	-11.5
185	75	574.4	12.1	.7/	. 287	7.23	13.57	,28	.28	25.8	31	1 0	51	۱		38	365	-11.5
190	20	574.7	n.G	.2	. 389	9.77	11.11	,12	.12	81.4	30	00	49 .	.1		R	354	-11.5
195	35	574.0	11.7	.2	. 307	7.73	13.07	·28	.28	27.6	029	10	-19	st .		38	344	-11.1
200	40	531.8	11.5	1.2	178	4.52	110.14	.56	.54	8.1) 28	30	48 `	、 メ	400=0 ca 5240-532.	- 38	335	-11.1
205	45	531.7	n.4	.)	. 447	11.21	9.38	٦.	.71	15.8	3) 28	2 0	-18	11	8 lbs.	38	333	-11.5
210	50	531.1	10.8	. 6	. 41.9	11.76	8.76	.85	,85	13.8	27	9 -004	16 l	ں در	©200 min	\$38	330	-11.5
215	55	520.8	105	.3	. 452	11.33	9.06	1.10	1,10	10.3	> 28	>0	46 (<u> 38 </u>	331	-11.5
220	3	530.2	9.9	. 9	. 496	12.18	7.59	2.34	2.34	6.2) 287	2 0	19	L	<u></u>	38	335	-12.0
225	05	529.7	9.4	5	.524	13.12	10,01	2.42	2.4	254	28	70	49 1	-W		39	340	-12.0
230	10	529.2	9.9	.5	.432	10.84	9,50	1.20	1.20	> 9,0	> 28	904	19 (2		<u>_31 -</u>	<u> </u>	-12.0
235	15	528.7	8.4	.5	.425	10,66	10.23	,10	.10	106.	6 28	9 /0	49 /	A .		39	343	
Tota											(35)	ME.	5BB					
										· · · · · · · · · · · · · · · · · · ·		~~ ~ 1		TI		<u>+2</u>	<u> </u>	<u> 73</u>
Т	ime	Тор	Left	Back	Right	Bottom	Firebox	Fr. 2n	ıd	Amb	Tnl.	C Gas Box	C Gas Impin	Part. Filt.	Part. Cond.	Filte	e Cond	· Filte
E/T Min	Ø	#2	#3	#4	#5	#6	#7	#8		#9	#10	#11	#12	#13	#14	出15	<u>ال</u>	#17
180	1420				4	Variation				73	106	228	33	78	39_	<u>82</u>	42	81
185	25		and the second		1. A.		, ite .	the age of	· · · ·	73	102	227	33	78	39	8	42	81
190	30		Terrange				2			73	00	226	34	78	39	8	42	8)
195	35		Cont and	and the second	- And	44 (Alizza et		100 - E		73	99	224	34	78	39	81	42	81
200	40			711-14,400	Lawrence of	- 2 a a .	n in dian	Sector 2		73	99	223	33	78	38	80	41	80
205	45			States+	and the second	1	t	ال. الم		73	98	222	34	78	38	80	42	80
210	50		(Same i +	2 Lines ve		× 44	R' france			74	99	221	34	78	39	80	42	80
215	55			ì	1	No. 6		ang the second		74	99	220	34	78	39	80	42	80
220	1500		WERN KEL		a de la companya de l		an wear.	in frait		73	/00	220	34	78	39	81	42	81
225	05			and the	4	16 1 F	34			74	101	220	34	78	39	81	42	81
230	10	- Mary	No.721-A	inter a	, n. 495 (18 ⁻⁶)	ų.				74	102	221	34	78	<u>40</u>	8	_ 42	81
235	15									74	102	222	34	79	<u>40</u>	82	- 42	82
Tot	 al								6	281)		1		1		1		

 $\left(\right)$

	÷								-								—	
Myre	n Consi	ulting Inc]	Data Sh	neet #14]	P <u> 5</u> of		Unit_Of	Him	<u>>~</u>		Dat	te <u>1</u>	7 1.1-	<u>7 Ru</u>	n <u>EPA</u>	1		
Test I	End Wt	523	ļ	<u>ат М</u>	<u>[B</u>	arometri	c Pressure	28.1	9_	"Hg	Gas Fl	ow @ 1.5	" Techni	cian(s)	ATTM	655		
Ti	me	Scale	Lbs.	Burn	CO ₂	CO ₂	O ₂	co	со	Gas	Tom	Stack		nacity	\widehat{T}^{2}	ځ ځ Note: د	Noch CI	TRAIN
E/T Min	O	WT.	Left	Rate	V.	%	%	V .	%	Bal	#1	Pres	sure		<u>#</u>	18	#20	VAC
240	1520	5783	20	.4	.493	12.35	ר.ר	1.64	1.6	1(2.5) 29	10	49 w	isps		39	<u>317</u>	-12,5
245	25	527.10	73	5	. 491	12:30	8.54	,20	,20	61.5	5) 294	10	50 0	<u>ن</u>		<u>3</u> 9	<u>349 -</u>	-125
250	20	527.1	68	.5	,438	10.86	9,93	.29	,29	37.	1 299	50	50 (2		39	<u>351 -</u>	12.5
255	25	5710.7	64	.4	, 353	8.87	12,02	·.10	.10	88:	7 295	50	<u>so '</u>	`		<u>39</u>	<u>350</u>	-13.0
260	40	526.2	5.9	.5	. 339	8.52	12.30	.12	,12	- 71.0	0 29	30	30	u		<u>39 :</u>	<u>348</u>	-125
265	45	525.9	5.6	.3	· 312	7.85	13.01	.15	,15	5 52.4	1 29	00	49	u		<u>39</u> 3	344 .	-12.5
270	50	525.5	5.2		296	7.410	13.40	مار	.16	146.1	0 28	70	19	11		<u>39 i</u>	3 <u>38 -</u>	-12,5
275	55	525.1	4.8	.4	. 276	10.910	13,89	.19	19	36.1	0 28	30	48	L		39 3	<u>;33 </u>	-12.5
280	lim	574 8	45	.3	.254	6.46	14.38	.19	.19	34.8) 27	80	47	u l		40 3	326 -	12.5
285	<u>n</u>	574.10	4.3	2	,305	718	13.16	.21	.2	36	627	30	46	14		39 3	521 -	12.5
290	10	574.3	4.0	3	2.70	7.06	12.77	.22	.22	32.	1 20	9 0	45	ц		39 3	- مالا	-12.5
295	15	574.0	37	3	, 411	10,31	10.41	.43	.43	5 24.0	5 26	7	45 1			39 3	313	-12.5
Tota	<u> </u>	501.0									(34	15) (5	785					
		<u> </u>	<u> </u>	L		4	I	8		I ,.				TI	\top	72	72	T3
Г	'ime	Тор	Left	Back	Right	Bottom	Firebox	Fr. 2n	d	Amb	Tnl.	C Gas Box	C Gas Impin	Part. Filt.	Part. Cond.	Part. Filter	Part. Candi	Pant. Filter
E/T Min	Ø	#2	#3	#4	#5	#6	#7	#8		#9	#10	#11	#12	#13	#14	\$15	#16	オリフ
240	1520	1	1	. (- [(1	•	75	103	223	34	79	4D	82	43	82
245	25									74	103	225	34	-79	40	83	43	83
250	30			ļ	1					74	103	226	34	79	40	83	43	83
255	25				1	1	·			75	103	228	33	79	40	83	43	83
260	40			i i	¥ ž	i i	1		•	75	102	228	33	80	40	83	43	83
265	45		_				(* 1. 1. 1.			75	102	228	34	80	40	83	43	83
270	50				Contract of the second s	and the second	and the second	vients.		74	102	228	34	80	40	83	43	65
275	55				l	in the state				75	101	228	34	79	40	83	43	83
280	1600		ĺ		1. Company					74	101	227	34	79	40	83	43	82
285	05									74	100	227	34	79	39	82	43	82
290	10						1			74	100	2210	34	79	39	82	43	82
295	15									74	199	225	34	78	39	82	43	82
Tot	al		Ť,						(893						17 17		

and a second A second secon

											i.							
		~															_	
	ι.															·	j.	
								1,				,	^	y		a 1		
Myre	en Consu	ulting Inc ピッウィ	Data Sl	neet #14]	P <u>6</u> of		Unit <u>OP</u>	+1 00	<u>~</u>		Dat	e <u>/</u>	9/1	<u></u> R	lun <u>Fr</u>	AI		
Test	End Wt	- 3-2,			<u>\(\$ </u>	arometri	c Pressure_	46.	<u> </u>	<u>"Hg(</u>	Gas Flo	0W @ 1.5 Stack	" Techni	cian(s)	ATM	<u>ES7</u>	Stor K	
E/T	n M	Scale WT	Lbs.	Burn Rate	CO ₂ V	CO ₂	O ₂	CO V	CO ·	Gas	Tem	p Statk	itic O	pacity	Co	O ∩∂: Note	se i'	TERIN
Min		(1). (-2) ()	Den Dr		279	9	1) 22	19			#1	Pres	sure			<u>+18</u>	21)	VAC
300	620	543.0	50	. 2	0011	7.54	11.20	20	17	1901	24	$\frac{2}{2}$				<u>91</u> 29	210	-12.5
303	20	525.1	22	• {	. 217	125 C 71	13.66	8	· <u>>0</u>	10	20	50	14			<u>21</u>	200	-125
315		562.0	2.2	1 2	270	S. AI	19.70	<u>,57</u>	1.57	112 2	7	7 - 0			Added Engl	20	200	-12.5
313	<u>- 35</u>	5761 /	10		. 3 10	9,97	11.21	166	166	(12) 4					573.6-	27	207	
320	μC	rne B			190	0,12	12.00	27	100	2112	200	9 -00		1	3,416	<u>,.21</u> 29	300	-12.5
323		523.0	1 N.	7	· <u>)</u>	907	10, 14	<u>,) /</u> 72	15/	6/11	123	70	45	<u> </u>	<u>C312.Min</u>	<u>57</u>	207	-12.5
330	<u>)~</u>	525.9			409	10	11.5%	<u>・10</u> スト	1.10	221	123	/0				37	207	-15,0
333	22	515.2		2	207	90-	10.56			221	26	$\frac{0}{1}$				21 29	200	-13,0
245	1 JW	229.1		2	<u>110</u>		12 2	<u> </u>		1.6	- 20	7 -00		11		$\frac{\partial}{\partial}$	207	-13.0
343	10	5/10		5	<u></u>	1.24	12110	<u>, 11</u> 		1010	<u>26</u>	7 0				<u></u>	200	-13.0
355		5611 m2 8		2	<u>. 251</u> 219	6.20	15.22	<u>, 19</u> 18		201	26	2 - 0				20	200	-15.0
Tota	<u>*""</u> 	5620			· 210	3.36	<u></u>		110	2414	212			-				-3.0
100	•#			<u></u>		l			I	<u> </u>			2021	<u>~ 1</u>		- 7	~ 7	-2
1	lime	Ton	Left	Back	Right	Battom	Fireboy	Er 2n		mb	Th	C Gas	C Gas	Part.	Part.	Part.	Part.	Part.
E/T		Top	LAR	Dack	Kigit	Dottom	FILCOOX	C.1 • #1			A 141.	Box	Impin	Filt.	Cond.	Fille	Cord.	Filter
Min		#2	#3	#4	#5	#6	#7	#8		#9	#10	#11	#12	#13	#14	#15	#16	\$17
300	1620									74	18	224	34	78	37	81	<u>42</u>	81
305	25					-				13	78	224	34	18	57	81	42	81
310	50						A MAR			73	78	224	34	78	57	181	42	181
315	35						A A A A A A A A A A A A A A A A A A A			13	78	123	34	18	37	181	<u> 42</u>	81
320	40				2 0 1					13	<u>47</u>	222	34	77	1 37	<u> XO</u>	42	181
325	45				diana, total	1		1		<u>73 </u>	97	222	34	77	2 57	08	42	180
330			1995 BL 199	-				5 action			17	111	39		40	80	43	120
240				No. 40	and the second second	لود بي المراجع				$\frac{15}{22}$		221	34		40	100	45	100
340		<u>) </u>	100 M							$\frac{10}{12}$		227	21	+ 7	70	100		100
343	+ 25			+		+			·····	$\frac{10}{22}$		222	24			00	45	100
350		1								×+	10 Gm	<u> </u>	21	+ + + + + + + + + + + + + + + + + + +	20		+12-	00
Tot	al J	+	-	· 						X X	1/	FFL	27	+''	- 57		176	100
	-			-	-	-	-	-			,		-			• • • •		

Myre	en Cons	ulting Inc	Data Sl	heet #14]	P <u>. 7</u> of	<u>7</u> 1	Init_DP	<u>t'no</u>	\sim		D	ate <u> </u>	911	<u>17</u> Ru	n <u>E</u> P	AI		
Test	End W	528		∆т~	B	arometrie	c Pressure_	28.2	20	"Hg	Gas F	'low @ 1	.5" Tech	nician(s)_	ATTA	,ESS		
T	ime	Scale	Lbs.	Burn	CO ₂	CO ₂	02	CO	со	Gas		Stack		0	T	3	Stock	GAS
E/T Min	Q	WT.	Left	Rate	V .	%	%	V.	%	Bal		#1 / Pr	essure	Opacity	ھر) لا	hdi men	#20	UAC
360	1720	523,7	0	,	168	4.27	6.55	.23	123	18,(0 29	70 -	0451		L.	39	299 -	-12,5
365											(2Ž	19573	725/7	Total			_	
370											3	H.D.(F.	0510	-73				
375																		
380																		
385										1				2				
390			1		i													
395																		
400										1	_		~					
405															•			
410						•									•			
415					•													
Tota	.1																	
		-					,								τ_{1}	72	T2	TS
Т	ìme	Тор	Left	Back	Right	Bottom	Firebox	Fr. 2n	d 1	Amb	Tnl.	C Gas Box	C Gas	Filt.	Part. Cond.	Filter	Cond.	Part. Filter
E/T Min	Ø	#2	#3	#4	#5	#6	#7	#8		#9	[′] #10	#11	#12	#13	#14	#15	#16	サンフ
360	1720	1		1	- Andrews	1		-		73	,97	222	2 34	77	39	80	42	80
365					- Margington			Constant of the second s	5	289)	1	Total						¥
370				and the second		Reisonas	and the second		E	2.5		+ 73						
375			1		ret Plane	and the second se	-	Sec. 14										
380		12 particular			and a second second		- Phanese											
385			1		Í	Stra- Wil												
390		C an angle			1	-						1			-			
395		a contraction of the second seco				a and a second							_				<u> </u>	
400			a second a s	autor for	A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR A CONT	a second a s										1	1	1
405				*	y, or	. F		1										
410								Ī								1		
415														-				
Tota	.l						1										1	1

. . .

WST6-For	m 8 Rev	12/09
----------	---------	-------

Site: <u>Myren Consult</u> Source: <u>Optimu</u>	ing, C		. <u>,,,</u> ,,,,,						
Source: Optimu		<u>oiville,</u>	WA	Date:	1/9	17 17	Analyte: CO ₂		
-	MA				: E	PA	\ \		
Zero Cyl #: Dor 3	AA	2265	5	Conc.	<u>00.0 </u> %	CO ₂	Cyl Press:	1810	ns
Certified By:	0+1	FRC					Date: 2/	25/16	1.0
Span Cyl #: <u>EB- 0</u>	Pre and Post Test Zero/Span Check Wordstove Data Sheet # 15-1 e: Myren Consulting. Colville, WA_Date: $1/4/117_Analyte: CO_2$ rree:								
Certified By:	IF and Post 1 set Zero/span Check Work Work With Way Date: $1/4/17$ Analyte: CO; arce: Optimum Way Date: $1/4/177$ Analyte: CO; arce: Optimum Way Date: $1/4/177$ Analyte: CO; Conc.00.0, % CO; Cyl Press: 1810 psi Date: $2/25/16$ Date: $4/15/15$ alyzer: Make: Horiba Model: PIR-2000 SN: 607024 Weit: SCFH Measured By: Rotameter: X Flowmeter: Audit Results and Adit Results Mutit Results Mutit Resul								
Analyzer: Make:_H	Pric and Post Test Zero/Span Check Woodstove Data Sheet # 15-1 Woodstove Data Sheet # 15-1 te: Myren Consulting, Colville, WA Run #: EPA.1 ro Cyl Press: 1810 psi OC Cyl Press: 1810 psi Certified By: $O_A A C_C$ Cyl Press: 1810 psi Conc. $00.0 %_CO_2$ Cyl Press: 1000 psi Certified By: $O_A A C_C$ Date: $2/25/16$ an Cyl #: E8 - $0 \ge 17.0^{10}$ Conc. 12.45% CO ₂ Cyl Press: 1000 psi Certified By: $O_A A C_CO_2$ Date: $2/25/16$ an Cyl #: E8 - $0 \ge 17.0^{10}$ Conc. 12.45% CO ₂ Cyl Press: 1000 psi Certified By: $O_A = 0$ Technologue ($0 \le V \in C_2$ NC - 25.0% CO ₂ Analyzer Output: $0 = 1.0$ v. W: 1.5 SCFH Measured By: Rotameter: X Flowmeter: Audit Results <td <="" colspan="2" td=""></td>								
Range: 0 - 25.0% C	Prie and Post Test Zero/Span Check Woodstove Data Sheet # 15-1 te: Myren Consulting, Colville, WA Date: $1/2 17 2$ Analyte: CO or Cylle: Colspan="2">Conc.00.0 % CO2 Cyl Press: $ B D$ psi certified By: $O+AQC$ Date: $2/25/16$ an Cyll#: Cordew Cordet Date: $2/25/16$ ante: $D=0+1716$ Conc. 12.45% CO2 Cyl Press: 1000 psi Certified By: $D=0.1716$ Conc. 12.45% CO2 Cyl Press: 1000° psi Certified By: $D=0.1716$ Conc. 12.45% CO2 Cyl Press: 100° psi Cord Cyl Technology Cordet Date: $-1/15$ ante: $D=25.0\%$ CO2 Analyzer Output: $0-1.0$, v www.l.5 SCFH Measured By: Rotameter: X Flowmeter: Conc. Audit Results int Expected Response ± Conc. $\Delta \%$ Meter DVM % Meter DVM % Difference $\Delta \%$ Audit Results								
Flow: 1.5 SCFH N	leasu	red By	: Rota	meter:_	<u>X_</u>	Flown	eter:		
EPA Span Values= 25 EPA Control Limits =	.0% (± 2.5	CO2 % of 2	5.0%	$CO_2 = \pm$	0.625%	% CO2	_		
Pre Run Audit: By:	• 	<u>4</u>			Time:_	10	<u>32 Temp:</u>	60	°F
			-	Audit I	Results			1	
Point I	Expec	ted Res	ponse	Act	ual Res	ponse	± Conc.		- <u></u>
# ·M	eter	DVM	%.	Meter	DVM	I %	Difference	Δ %	
Zero 0	0.0	00.0	00.0	00.0	.000	.098	12 +0.09822	+0,39	
Span 4	9.8	.498	12.45	49.0	.498	12.47	61 + 0.02607	+0.21	
Comments: Post Run Audit: By:		849	<u>)</u>	Audit D	Tìı	me:[749 Temp:	<u>73</u> 9	F
Point E	mect	ed Resn	onse	Acma	l Respo	nee			
# M	eter	DVM	%	Meter	DVM		± Conc. Difference	Δ%	
Zero 0	0.0	00.0	00.0	00.0	,003	.17220	+0 12170	+019	
Span Y	1.8	.498	12.45	50.2	.515	12.898	5 + 0, 44BG	+360	
Comments:				···· · · · · · · · · · · · · · · · · ·					
	- *								

Zero % Difference (△%) = <u>Act % (ppm) – Exp % (ppm)</u> X 100 Full Scale Value

Span % Difference (Δ %) = <u>Act % (ppm) - Exp % (ppm)</u> Exp % (ppm) X 100

.

Pre and Post Test Zero/Span Check Woodstove Data Sheet # 15-3

1....>

ł

Site: <u>Myren Consu</u>	lting, In	c. Lab,	<u>Colvill</u>	<u>e, WA</u>	Date:_	1/9/17	Analyte: <u>C(</u>)
Source: OP	timu	<u>M</u>		Run #:	EP	'A-1		
Zero Cyl #:	3AA	2245		Conc. <u>0</u>	<u>0.0_</u> %	<u>_CO</u> C	yl Press: 181	O psi
Certified By	: <u> </u>	LARL	····			D:	ate: <u>2/25-/</u>	16
Span Cyl #: _ 🕞 🖁	5-00	4176	L	Conc. <u>2.</u>	61 %	<u> </u>	yl Press: 100	
Certified By	: Liqu	2 Te	chnoli	<u>xy</u>	Joy P	Da	ate: <u>4/15/1</u>	5
Analyzer: Make: <u>C</u>	<u>alifornia</u>	Analyt	ical In	strumen	<u>ts</u> Mod	el: <u>200</u> SN: _	1M12002	
Range: <u>0 – 10.0</u>	<u>% C</u>	<u>O</u> An	alyzer	Output	: 0-	<u>10.0</u> v.		
Now: <u>1.5 scfh</u>		Measur	ed By:	Rotam	eter: <u> </u>	Flowmet	er:	
CPA Span Values = CPA Control Limits	$\frac{0-5.0}{5} = \pm 2.5^{\circ}$	% CO % of <u>5.0</u> 5 <i>4</i> 4	or <u>0</u> .)% C($(-10.0\%) = \pm 0.1$	<u>25</u> % (CO; ± 2.5% of <u>1</u>	10.0% CO = ± $10.0%$) <u>.250 </u> % (
Pre Kun Audit: B	s y:	V/D	Pre	Test Au	dit Resu	ilts		I '
Point	Expec	ted Res	ponse		Actual	Response	± Conc.	A 0/
#	Meter	DVM	%	Meter	DVM	%	Difference	Δ %
Zero	00.0	.000	00.0	0.00	0.00	,00566	4.00566	+0.11
Span	2.61	2.61	261	2.63	2.61	25758	-0.0342	-131
<u>Comments:</u>		<11		i i i		1749	T 2	
Post Run Audit:	By:	VHD	Post	Test Au	Tin dit Res	ne: <u>177/</u> ults	Temp:	<u> </u>
Point	Expect	ed Resp	oonse		Actual 1	Response	± Conc.	
#	Meter	DVM	%	Meter	DVM	%	Difference	
Zero	00.0	.000	00.0	0.07	0.08	,0844	+0.0844	+1.69
Span	2.6	2,61	2.61	2.62	2,61	2.5758	-0.0342	- 31
<u>Comments:</u>			10 (E.V				-	

Zero % Difference (Δ %) = <u>Act % (ppm) – Exp % (ppm)</u> X 100 Full Scale Value

Span % Difference (Δ %) = <u>Act % (ppm) - Exp % (ppm)</u> X 100 Exp % (ppm)

			Quality (Woodstove Dat	Checks ta Sheet #16		Unit: OP Run: E Date: '/ A Technicians WS DS 16,	ATM E Rev 1/12	55
The	rmocouple Check (at ambient)	: T/C # 1:	265 ⁰F	; T/C #	2:	°F	
T/C	# 3:	_°F;	T/C # 4:	°F	; T/C #	5:	°F;	
T/C	# 6:	°F;	T/C # 7:	<u> </u> °F	; T/C #	8:	°F;	
T/C	# 9:	_°F;	T/C # 10:	<u>۹</u> ۰۶	; T/C #	11: 74	°F;	
T/C	# 12: 30	_°F;	T/C # 13:	<u>69_</u> ∘F	; T/C #	14: <u>50</u>	°F;	
T/C	# 15: 74	_°F;	T/C # 16:	<u>57</u> °F	; T/C #	17: V A	°F;	
T/C	# 18: 51	°F;	T/C # 19:	°F	; T/C #	20: <u>30</u> 3	≥°F;	
T/C	# 21:	_°F;	T/C # 22:	►••••	; T/C #	23:	°F;	
T/C	# 24:	_°F;	T/C # 25:	°F	; T/C #	26:	°F;	
Con	nments Store	was vu	nning who	en T/L	Chec	e wes a	deve i	
The	rmocouple Readou	t: Pretest Ze	ero/Span Check	and Calibratio	on:			
Zero (0°F): <u> </u>	Adj _°F to:	°F	Post Test Ch Zero (0°F):	neck	%D °F	ifference O	
Spar (200	n)0°F): 2001	Adj _°F to:	°F	Span (2000°F):	2004	°F _ ł ¢	0.04	
(All	owable % Differen	$\operatorname{ce}\left[\Delta\%\right]=1$	1.5%. $\Delta\% = [(A$	Actual Respon	se-Expec	ted Respons	e)/Expected	
Res	ponse]. ∆% calcula	ated in degr	ees absolute (°A	A). $[^{\circ}A = {}^{\circ}F +$	460])			
The	rmocouple Readou	t Pretest Lii	nearity Check				-02	
0°F	= _1	°F;	200°F =	<u>200_</u> °F;		400°F =	378	_°F
600	°F = 60	°F;	800°F =	80°F;		$1000^{\circ}F = _{-}$	1000	_°F
120	0°F = <u>1199</u>	°F;	1400°F =	[400_ °F;		1600°F = _	1601	°F
180	0°F = 180	°F;	2000°F =	2001_°F	<i>I</i> .	<i>A</i> .	(An	
Con	nbustion Gas (CO ₂	, O ₂ , CO)	Train Leak Che	ck: Pre <u>4</u>	0K-1 44	Post_OK	~ 70	•
Dra	ft (Static) Gauge L	evel/ Zero (Check:		Pre <u>Ol</u>	12		
Pos	1 0× 15B	-	_	- kan tan	A _ 11 /	1		600
Scal	le Check Pre (Wt,	#'s): 5	32.5-57	27.5 = 5	5.0166	. / 5.0	olbs. of	AR
	Post (W1	t, #'s): 57	28.3-52	33= 5	<u>r.0 165</u>	15.01	bs. OKV	B
Stac	ck Cleaned Prior to	the Run:	Yes	No	, .			·
Tun	nel Cleaned Prior t	o the Run:	Yes	No_	_			

.

•

.

Becherini Scale Center, Inc. 317 E. Sprague Spokane, WA 99202

SCALE CALIBRATION RECORD

Customer: 11	IREN			Date: 3/30/	16
Work Order Number	r: 49901		PO Number:		
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
1. PANTHER	4466459	1000 × . 1	d	0.	<u> </u>
	(Pass)Fail		50	499	50.0
Notes: SANA	OF-CAL	hRATEd	100	99.9	100.0
		ONT	200	199.9	200.0
CINDER (B/ocK = 27	7.1265	300	299.9	300.0
ىدە- مىلىمى بىرىمى بىرى بىر دىشا بىرە يېپ			Į Į	4	4
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
2. PANTHER	00155556CH	15Kx1	a		/
	PassFail		50		
Notes:	+ Cherk		100		
NICAN	for crisci		300		
i i			650		
· · · · · · · · · · · · · · · · · · ·			\$	/	·/
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Reading
3. PAINTHER	00025736AJ	1000 x.1	d	4	
: 	Pass.).Fail		50_	50.0	
Notes: South	1		100	100.0	
	· ·		200	200.0	
			SCH	300.0	
			Q	×	/
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
4. PANTHER	0092.6516KL	1000 x .1	ð ·	P.	8
	Pass.).Fail		50	50.0	50.0
Notes: PENTO	R Palih	not-l	100	99.9	100.0
Child Ip	" CATTO	1/4/1=01	200	1999	200.0
	-		300	299.3	300.0
	- <u> </u>	words	<u> </u>	ð	P
Additional Comment	ts:				
		• · ·			
Last Checked:	9/15	· · · · · · · · · · · · · · · · · · ·	Next Check Due:	9/16	
Weights Certified:	10	0/14	Technician:		
		Calibration checked IA	W NIST handbook 44		

Becherini Scale Center, Inc. 317 E. Sprague Spokane, WA 99202

SCALE CALIBRATION RECORD

Customer: ///	REN			Date: 3/30/1	16
Work Order Numbe	r: 48901		PO Number:		
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Reading
1. SARTORIUS	25359106	15Kx.5	Þ	\square	
CISL1-4	Pass. Fail	2	50	50.0	
Notes:	August 199		100	100.0	
	· · ·		500	500.0	
· · · ·			1000	1000.0	/
	NN	= <mark>.</mark>	9	4	/
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Reading
2. OHAUS	2350003	24×.002	Ø	ð	ð
RANGER	PassFail		4	4.000	4.000
Notes: > /-/	it l	 · .	10	10.000	10.000
CALIBI	RAIEG		20	19.998	20.000
			24	23.998	24.000
			¥	Ø	ϕ
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Reading
3.				· · ·	
· · ·	PassFail	$1. p_{\pm} + $	1-		
Notes:	ş	ana gayar (s.) S	115-17		· · · · · · · · · · · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·				
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
4.					· · · · · · · · · · · · · · · · · · ·
, <u> </u>	PassFail				
Notes:	· · · · · · · · · · · · · · · · · · ·	<u> </u>			
	e				
·					

	9110	Next Check Due:	9/1/
Last Checked:	11.15	Next Offect Due.	11/6
Weights Certified:	10/14	Technician:	TECTON
		O HILL Have the sheet INN NIOT boothook 14	

Calibration checked IAW NIST handbook 44,

DENSITY STANDARD USED FOR TROEMNER PRECISION WEIGHTS

Troemner Inc. adjusts all new weights and all weights received for recalibration on the basis of apparent mass versus material of density 8.0g/cm³ at 20°C. This action is in accordance with the recommendations of the American Society for Testing and Materials specification ANSI/ASTM E 617 and the International Organization of Legal Metrology (OIML) International Recommendation No. 20.

Previously, all weights had usually been adjusted on the basis of apparent mass versus "brass," a hypothetic material of defined density 8.4g/cm³ at 0°C and 8.3909g/cm³ at 20°C. This practice originated in the early 1800's and was adopted in all of the English speaking countries as well as a number of other countries. Now most mass standards and test weights are made from stainless steel (density ranges from 7.77g/cm³ to 8.0g/cm³). A number of countries have adopted the recommendations of OIML and the foremost balance manufacturers are adjusting the built-in weights in their balances on the basis of apparent mass versus 8.0g/cm³. In order to smooth the transition in this country, the Reports of Calibration of the National Bureau of Standards are reporting the corrections to calibrated mass standards on both bases.

In terms of normal weighing procedures the change is very small. For a given weight, the mass value assigned on the basis of apparent mass versus density 8.0g/cm³ material will be 7 parts per million higher than the value assigned on the basis of apparent mass versus "density 8.4g/cm³" material. In many cases the allowed weight adjustment tolerances are so large that this change is immaterial although closely adjusted weights often have a smaller tolerance than the correction change. For example at the 1 kilogram level the change is 7 mg. For comparison the ANSI/ASTM E 617 Class 6 tolerance for 1 kilogram is 100 mg while the Class 1 tolerance is 25 mg. A detailed discussion of mass and mass values is given in Reference 3.

Precision Weights manufactured by Troemner Inc. to ASTM. Class 1, 1.1, 2, 3, 4, 5, and 6 tolerances and the equivalent OIML and NBS tolerances are of the following materials:

Designation	Material	Density	Weight Range
Stainless Steel	18-8	7.84g/cm3 at 20°C	1 g & larger
Stainless Steel	18-8	8.0g/cm³ at 20°C	50 mg to 500 mg
Aluminum	1100	2.7g/cm³ at 20°C	30 mg & smailer
References:			

 ANSI/ASTM E 617
 Available from: Troemner Inc. 6825 Greenway Ave., Phila. Pa. 19142 215-724-0800 or American Society for Testing and Materials, 1916 Race Street, Phila., Pa. 19103

 OIML INTERNATIONAL RECOMMENDATION No. 20 Available from: Organisation Internationale De Metrologie Legals 11 Rus Trugot - 75009 Paris, Prance

 NBS MONOGRAPH 133, MASS AND MASS VALUES Available from: Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Order by SD Catalog No. C13,44:1331 Stock Number 0303-01178

Manufacturers of Precision Weights... Mass Standards = Balances = Leboratory Apparatus 8825 Greenway Avenue - Philadelphia, Pa. 19142 215/724/noch

Wts. USED FOR Scale QC Checks

QUALITY CONTROL SERVICES

LABORATORY EQUIPMENT • SALES • SERVICE • CALIBRATION • REPAIRS 2340 SE 11TH Ave. Portland, Oregon 97214 • Box 14831 Portland, Oregon 97293 (503) 236-2712 • FAX (503) 235-2535 • www.qc-services.com

Myren Consulting 512 Williams Lake Road Colville, WA 99114

Report Number: MYRC0224850860161020

A2LA ACCREDITED CERTIFICATE OF CALIBRATION WITH DATA

INSTRUMENT INFORMATION

ltern	Make	Model	Serial Number	Customer ID	Location
Balance	Sartorius	CPA224S	24850860	N/A	Lab
Units	Readability	SOP	Cal Date	Last Cal Date	Cal Due Date
g	0.0001	QC012	10/20/16	4/13/16	4/2017

FUNCTIONAL CHECKS ECCENTRICITY LINEARITY STANDARD DEVIATION **ENVIRONMENTAL** Test Wt: Tol: Test Wt: CONDITIONS Tol: Test Wt: Tol: 0.0001 100 0.0003 0.0002 100 50 x 4 ☑ As-Found: 9.100.0000 **As-Found:** 1,100.0000 5,100.0000 Good Fair Poor **2.** 100.0000 **6.** 100.0000 **10.** 100.0000 Fail: Pass: 🗹 Pass: 🗹 Fail: 3,99,9999 7.99.9999 Result Temperature: 19.8°C As-Left: As-Left: 4.100.0000 8.100.0000 0.00004 Pass: Fail: Pass: $\mathbf{\nabla}$ Fail:

· · · · · · · · · · · · · · · · · · ·	A2LA ACCREDITED S	ECTION OF REPORT	
Standard	As-Found	As-Left	Expanded Uncertainty
200	199.9997	200,0000	0.00014
100	99,9998	100.0000	0.00014
50	49.9999	49.9999	0.00014
10	10.0000	9.9999	0.00014
1	1.0000	1.0000	0.00014
0.1	0.1000	0.1000	0.00014

CALIBRATION STANDARDS

ltem	Make	Model	Serial Number	Cal Date	Cal Due Date	NIST ID
Weight Set	Rice Lake	30 kg-1mg	S751	1/4/16	1/2017	20160003

Permanent Information Concerning this Equipment:

Comments/Info Concerning this Calibration:

Date: 10-2014 Report prepared/reviewed by;

Technician: R. Hintz Signature:

THIS CERTIFICATE SHALL NOT BE REPRODUCED WITHOUT THE APPROVAL OF QUALITY CONTROL SERVICES, INC.

The uncertainty is calculated according to the ISO Guide to the Expression of Uncertainty in Measurement and includes the uncertainty of standards used combined with the observed standard deviation and readability of the unit under test. The uncertainty is expanded with a k factor of 2 for an approximate 95% level of confidence. Instruments listed above were calibrated using standards traceable to the National Institute of Standards and Technology (NIST). Calibration data reflect results at the time and location of calibration. Calibration data should be reviewed to insure that the instrument is performing to its required accuracy. Calibrations comply with ISO/IEC 17025 and ANSI/Z540-1-1994 quality standards.

1 ----

QUALITY CONTROL SERVICES

LABORATORY EQUIPMENT • SALES • SERVICE • CALIBRATION • REPAIRS 2340 SE 11TH Ave. Portland, Oregon 97214 • Box 14831 Portland, Oregon 97293 (503) 236-2712 • FAX (503) 235-2535 • www.qc-services.com

Myren Consulting 512 Williams Lake Road Colville, WA 99114

Report Number: MYRC0224850860160413

A2LA ACCREDITED CERTIFICATE OF CALIBRATION WITH DATA

INSTRUMENT INFORMATION

Make	Model	Serial Number	Customer ID	Location
Sartorius	CPA224S	24850860	N/A	Lab
Readability	SOP	Cal Date	Last Cal Date	Cal Due Date
0.0001	QC012	4/13/16	11/4/15	10/2016
	Make Sartorius Readability 0.0001	MakeModelSartoriusCPA224SReadabilitySOP0.0001QC012	MakeModelSerial NumberSartoriusCPA224S24850860ReadabilitySOPCal Date0.0001QC0124/13/16	MakeModelSerial NumberCustomer IDSartoriusCPA224S24850860N/AReadabilitySOPCal DateLast Cal Date0.0001QC0124/13/1611/4/15

FUNCTIONAL CHECKS ECCENTRICITY LINEARITY STANDARD DEVIATION **ENVIRONMENTAL** Test Wt: Tol: Test Wt: Tol: Test Wt: Tol: CONDITIONS 100 0.0003 50 x 4 0.0002 100 0.0001 ☑ As-Found: As-Found: 1.100.0000 5.100,0000 9.100.0001 Good Fair Poor Pass: Fail: 🛛 Pass: 🗹 Fail: 2.100.0001 6.100.0000 10.100.0001 3.100.0000 7.100.0001 Result As-Left: As-Left: Temperature: 19.8°C 4.100.0001 8.100.0001 Pass: 🗹 0.00005 Fail: 🗖 Pass: Fail: 🗆

<u></u>	A2LA ACCREDITED S	ECTION OF REPORT	······································
Standard	As-Found	As-Left	Expanded Uncertainty
200	200.0004	200.0000	0.00015
100	100.0001	100.0000	0.00015
50	50.0000	49.9999	0.00015
10	10.0000	9.9999	0.00015
1	0.9999	1.0000	0.00015
0.1	0.0999	0.1000	0.00015

CALIBRATION STANDARDS

ltem	Make	Model	Serial Number	Cal Date	Cal Due Date	NIST ID
Weight Set	Rice Lake	30 kg-1mg	S751	1/4/16	1/2017	20160003

Permanent Information Concerning this Equipment:

Comments/Info Concerning this Calibration:

4/16 Performed internal span overwrite adjustment.

Report prepared/reviewed by: Date: 4.13.2016

Technician: R. Hintz Signature:

THIS CERTIFICATE SHALL NOT BE REPRODUCED WITHOUT THE APPROVAL OF QUALITY CONTROL SERVICES, INC.

The uncertainty is calculated according to the ISO Guide to the Expression of Uncertainty in Measurement and includes the uncertainty of standards used combined with he observed standard deviation and readability of the unit under test. The uncertainty is expanded with a k factor of 2 for an approximate 95% level of confidence. Instruments listed above were calibrated using standards traceable to the National Institute of Standards and Technology (NIST). Calibration data reflect results at the time and location of calibration. Calibration data should be reviewed to insure that the instrument is performing to its required accuracy. Calibrations comply with ISO/IEC 17025 and ANSI/Z540-1-1994 quality standards.

	-		ADDERSING HARAAAAA	NANANASAAAA	
ALTEK					
CERTIFICATE	OFC	ALIBR	AHON		
This is to Certify that your Altek Uni accuracies are traceable to the Nai (formerly NBS) within the limits of t pertaining to these standards are on	it has bee tional ins he NIST file and ar	en calibrate titute of St Calibration re available f) using stand andards and Services. Ac or examinati	jards whos I Technolog tual record on.	e IV IS
Certified by: Altek Industries Corp. Recommend Recalibration: Annually	n gan na				
In service date	196				
Model K 2100 F_Serial	No, 56	erial # 1	1/533		
Calibration Technician		ALT 210 Comi (71	EK INDUST herce Drive, Roche 6) 334-3720 FAX	EIES CO Nef, NY 14623 (719) 334-6673	
Factory Calibration Date			800-32245 800-32245 Anywhiere Ir	isa USA	
		NAME AND A PARTY AND AND AND A			

MYREN CONSULTING, INC. 512 Williams Lake Road Colville, WA 99114 Office: 509 684 1154 Lab: 509 685 9458

(....

Calibration Data Sheet # 65 Revision 1 3/3/04

THERMOCOUPLE READOUT CALIBRATION	DATE: 5 /19/16 TECHNICIAN: ATM 555				
Thermocouple Readout Manufacturer: Omega					
Model #: 400 8-TC Serial #: 11020109	Type: <u> </u> Range: <u>0-1/00⁰ F</u>				
Location: Center Dial Stration -	- Dial Station # 2				
Calibrated with: Alter SN 177:	553 0-2100°F				
As found: 0° F = Adjusted to: <u>2/00</u> \circ F = <u>2/00</u> Adjusted to:					
$0 = 0$ $\frac{\$}{0}$ $800 = \frac{\$02}{-1}$	Dif $* \text{ Dif}$ 1600 = 1601 - 00049				
$100 = 97 \pm 0054 900 = 898 \pm 100$	0015 1700 = 1700 01				
200 = 201 - 0015 - 1000 = 1001 - 001 - 001 - 001 - 001 - 00001 - 0001 - 0001 - 0001 - 0001 - 00000 - 00000 - 00000 - 0000 - 00	20068 1800 = 1801 -,000444				
$300 = \frac{297}{10039} + \frac{10039}{1100} = \frac{1099}{100} + \frac{1}{100}$	0.0064/1900 = 1900 0/				
400 = <u>399</u> <u>+.0012</u> 1200 = <u>1199</u> <u>+.</u>	$\frac{00000}{2000} = \frac{2001}{-00041}$				
$500 = 498 \pm 0021 \times 1300 = 1299 \pm 0000$	00057/2100 = 2100 0				
600 = 6020019 - 1400 = 1400	0 1				
700 = 698 + 0017 / 1500 = 1500	<u>o/</u>				

* Dif = (Reference Temperature $^{\circ}F + 460$) - (Readout Temperature $^{\circ}F + 460$) Reference Temperature $^{\circ}F + 460$

 \mathbf{Or}

* Dif = (Reference Temperature °C + 273) $_{\text{C}}$ (Readout Temperature °C + 273) Reference Temperature °C + 273 MYREN CONSULTING, INC. 512 Williams Lake Road Colville, WA 99114 Office: 509 684 1154 Lab: 509 685 9458 Calibration Data Sheet # 65 Revision 1 3/3/04

- In 11

THERMOCOUPLE	READOUT CALIBRATION	DATE: $2/19/16$ TECHNICIAN: ATM ESS	
Thermocouple	Readout Manufacturer:M	299	
Model #: 113	5 KF serial #: 004487KF	Type: K Range: 0-1900°	ler.
Location:	Jpex 45G-P Meder B	non	
Calibrated wit	th: Alter SN 1775	33 0-2100°12	
As found: 0°	F = 0 $F = 1901$ Adjusted to:	1900	
0 =	$\frac{\$ \text{ Dif}}{0} \qquad \$ 00 = \underbrace{\$ 00}_{0} \qquad \underbrace{0}_{0}$	$\frac{1600}{1600} = \frac{1600}{0}$	-
$100 = -\frac{96}{10}$	$\pm .0071 / 900 = 897 \pm .000$	022 1700 = 1699 +.00046	o 🗸
200 = <u>203</u>	0045 1000 = 100101	0068 1800 = 1800 0	
300 = 299	$\pm .0013^{1100} = 1099 \pm .000$	<u>bolo</u> 4/1900 = 1900 0/	
400 = 400	0/ 1200 = 1199 +.00		
500 = 498	+.0021 1300 = 1297 +.00	<u>017</u> =	
600 = 600	<u>0 / 1400 = 1399 +.00</u>	2054	
700 = 696	+.0034 1500 = 1498 +.00	10	•

* Dif = (Reference Temperature $^{\circ}F + 460$) - (Readout Temperature $^{\circ}F + 460$) Reference Temperature $^{\circ}F + 460$

Or

% Dif = (Reference Temperature °C + 273)
Reference Temperature °C + 273)
Reference Temperature °C + 273

Calibration Data Sheet # 65 MYREN CONSULTING, INC. 3/3/04 Revision 1 512 Williams Lake Road Colville, WA 99114 Office: 509 684 1154 Lab: 509 685 9458 DATE : -THERMOCOUPLE READOUT CALIBRATION Thermocouple Readout Manufacturer: Jan CO Model #: 768-KF-02serial #: 900167 Type: K Range: 0-1999 511-M Meter Box ΛQx Location: 0-2100°F 77583 SN Calibrated with: 2 Adjusted to: As found: 0° $\mathbf{F} =$ Adjusted to: 1900° % Dif / % Dif /

0 =	0 = 800	$0^{-1600} = 1614$	- 0068
100 = 94	<u>+.0107 900 = 899</u>	+.00074 1700 = 1710	-,00461
200 = 199	+.0015 /1000 = 1006	-1004 1800 = 1806	-100271
300 = <u>295</u>	+.0066 1100 = 1107	-0045 1900 = 1900	0/
400 = <u>394</u>	<u>+.0070 1200 = 1210</u>	0060 2000 =	and the second sec
500 = 491	<u>+.0094</u> 1300 = 1312	0068/ =	
600 = <u>595</u>	+.0047/1400 = 1415	- 1800, -	
700 = 693	$\pm .0060$ 1500 = 1514	1001-	

% Dif

% Dif = (Reference Temperature °F + 460) - (Readout Temperature °F + 460) Reference Temperature °F + 460

Or

% Dif = (Reference Temperature °C + 273) (Readout Temperature °C + 273) Reference Temperature <u>°C</u> + 273
	•	· .		Woodstove Revision	Data Sheet 0 12/18/01	# 55	
THERMOMETER CALIBRAT	TION DATE :	11/16/10	D TECHNIC	IAN: <u>A.7</u>	Myren	· · ·	
MANUFACTURER: ERTO	DE EPTRO	Fisher	Trylor	Taylor	Prenium	`	
CAT #. 10053	E6 E17	ASTM57/F	1330 N/H	1330 N/A			
SERIAL NO. 169	<u>k35473</u>	AD4544					
RANGE: $-\frac{1}{10}$	0°02 0-260°C	<u>0-180°15</u>	20-170°E	<u>20-1209</u> =	<u>0-120°1=</u>		1
GRADUATIONS: 0,1	<u>c °c</u>	1° <i>1</i> =	100	1°F	2° F		- Marine
TYPE: Tub	c Tube	Tube	Tube	Tube	Dal		
TEMP. POINT 1 <u>.4</u>	<u>1.0</u>	32	33	34	34		
2 69		45	46	46	48		
3 14,1	6 15	59	59	60	60		
4 <u>22</u> .	9 23		75	75	75		

COMMENTS:

. . .

 ${}^{o}F = ({}^{o}C \times 9/5) + 32$ ${}^{o}C = (5/9) ({}^{o}F - 32)$

ž.

EVER READY THERMOMETER CO., INC. 228 LACKAWANNA AVENUE WEST PATTERSON, NJ 07424 (201) 812-7474

REPORT OF CALIBRATION

LIQUID-IN-GLASS-THERMOMETER

CALIBRATED BY EVER READY THERMOMETER CO.

1

MARKED: ERTCO CAT 1005-3FC S/N-1697 RANGE: -1 TO +101 DEGREES C IN 0.1 DEGREE GRADUATIONS.

THERMOMETER READING	CORRECTION (ITS-90)**
0.00 C 10.00 20.00 30.00	0.00 C 0.00 0.00 0.00
40.00 50.00 56.00	0.00
60.00 70.00 80.00	0.02 0.00 0.00
90.00 100.00	0.00

** ALL TEMPERATURES IN THIS REPORT ARE BASED ON THE INTERNATIONAL TEMPERATURE SCALE OF 1990 (ITS-90) PUBLISHED IN THE METROLGIA 27, NO. 1, 3/10/90.

THIS THERMOMETER WAS CALIBRATED AGAINST A STANDARD CALIBRATED AT THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) FORMERLY THE NATIONAL BUREAU OF STANDARDS (NBS) IN ACCORDANCE WITH ASTM METHOD E 77, AND NBS MONOGRAPH 174.

FOR A DISCUSSION OF ACCURACIES ATTAINABLE WITH SUCH THERMOMETERS SEE NBS MONOGRAPH 250-23.

IF NO SIGN IS GIVEN ON THE CORRECTION, THE TRUE TEMPERATURE IS HIGHER THAN THE INDICATED TEMPERATURE; IF THE SIGN GIVEN IS NEGATIVE, THE TRUE TEMPERATURE IS LOWER THAN THE INDICATED TEMPERATURE. TO USE THE CORREC-TIONS PROPERLY, REFERENCE SHOULD BE MADE TO THE NOTES GIVEN BELOW.

CONTINUED

TEST NUMBER: 152439 DATE: 07/16/96 STANDARD SERIAL NO. 128239 NIST IDENTIFICATION NO. 88024

REPORT OF CALIBRATION

LIQUID-IN-GLASS-THERMOMETER

THE THERMOMETER WAS TESTED IN A LARGE, CLOSED-TOP, ELECTRICALLY HEATED, LIQUID BATH, BEING "IMMERSED" 76MM. THE TEMPERATURE OF THE ROOM WAS ABOUT 25 DEGREES C (77 DEGREES F). IF THE THERMOMETER IS USED UNDER CONDITIONS WHICH WOULD CAUSE THE AVERAGE TEMPERATURE OF THE EMERGENT LIQUID COLUMN TO DIFFER MARKEDLY FROM THAT PREVAILING IN THE TEST, APPRECIABLE DIFFERENCES IN THE INDICATIONS OF THE THERMOMETER WOULD RESULT.

THE TABULATED CORRECTIONS APPLY PROVIDED THE ICE-POINT READING, TAKEN AFTER EXPOSURE FOR NOT LESS THAN 3 DAYS TO A TEMPERATURE OF ABOUT 20 DEGREES C (70 DEGREES F) IS 0.00 DEGREES C. IF THE ICE-POINT READING IS FOUND TO BE HIGHER (OR LOWER) THAN STATED, ALL OTHER READINGS WILL BE HIGHER (OR LOWER) TO THE SAME EXTENT. IF THE THERMOMETER IS USED AT A GIVEN TEMPERATURE SHORTLY AFTER BEING HEATED TO A HIGHER TEMPERATURE. AN ERROR OF 0.01 DEGREES OR LESS, FOR EACH 10 DEGREE DIFFERENCE BETWEEN THE TWO TEMPERATURES, MAY BE INTRODUCED. THE TABULATED CORRECTIONS APPLY IF THE THERMOMETER IS USED IN THE UPRIGHT POSITION; IF USED IN A HORIZONTAL POSITION, THE INDICATIONS MAY BE A FEW HUNDREDTHS OF A DEGREE HIGHER.

TEST NUMBER: 152439 DATE: 07/16/96 STANDARD SERIAL NO. 128239 NIST IDENTIFICATION NO. 88024

Charles Tang-Nian QUALITY CONTROL MANAGER

Revised	. 7/	1	1

· · · ·	\top	Revised 7/11
	Dry Gas Meter Calibration Data	
Date: 11/16/16	Technician: ESS	
Calibration Meter Mfr: <u>Fockwell</u>	SN: 105 2202	Y: 0,9963
Meter Box ID <u>45 G - P</u>	Meter Mfr: Rockwell	SN: 26556
Electrical Check OK	Pitot Leak Check OK	
Leak Check Front Half OK	Back Half_0KV	· · · · · · · · · · · · · · · · · · ·

BP = 28.32 in Hg

ł

Orifice		Gas Volume			Temper	ature		Time	ľ
(Δh) in.		Cal.	Dry Gas		Cal.	Dry Ga	s Meter	(⊕), Min.	
H ₂ O		Meter (Vc), (cu.ft.)	Meter (Vm), $(m^3)(ft^3)$		Meter (Tc), °F	Inlet (Tmi), (°F) (°C)	Outlet (Tmo), (°F)(°C)		
, 80	initial	835.908	236.200	initial	58	60	60		
180	final	840.959	241,402	mid	58	64	64	10.15	ļ
,80				final	5.8 ×	65	65	10.28)	
	total	5.051 ×	5.202 X	avg.	58	63	63		
			506 ctm		518	523	523	523	
,90	initial	841.439	241.900	initial	58	64	64		
90	final	846.461	247.102	mid	58	67	67	9:32	
			6-17.10-	final	58	70	70	(9.53)	~
.90	total	5.022	5.2021	avg.	58×	674	67		
			.546 ctm		518	577 /	527-	527	:
1.00	initial	846.850	247.500	initial	58	68	68		
1,00	final	867.000	252,904	mid	58	72	72	011-	
		0.000	COP.I.	final	59	7 <u>3</u>	75	(9.28)	/
1.00	total	5.156"	5.4041	avg.	581	$\overline{\gamma}$	7 "		
· ·			.582 ctm		518	531	531	53	
	initial		· · · · · · · · · · · · · · · · · · ·	initial	ļ				
	final		-	mid					
-				final					
	total	+ T		avg.				<u>.</u>	
		·		<u></u>					
· -	initial			initial	<u> </u>	·			
	final			mid					
			·	final	<u> </u>				
	total		·	avg.					

Y = (Y)(Vc)(Pb)(Tm + 460)(Vm)(Pb + $\Delta h/13.6$) (Tc + 460)

 $\Delta h @= \frac{(0.0317)(\Delta h)}{Pb(Tmo + 460)} [(Tc + 460) (\Theta)] / [(Vc)(Yc)]^{2}$

Book Holf Leak Check Store Stor A Leg 1 7.78" M20 7.78" H20 0.00" H20 Leg 2 6.86" 6.86 0.00

Ĺ....

Front	Half Leak	c heck	Reading	Leak	k n
. .	in <i>big</i>	" A COMPANY"	The second	c.mm	c+m
OGm	- 16.75	,502	, 503	and the second	. 00
TM	me the off the	, 785	,786	and th	,001

۴

Meter Box: 45 6-9 Date: 11/16/16 Page: 2 of 3 Rev 6-10

Meter Box Calibration Page 2

 $Y = \underbrace{(Y_{c})(Y_{c})(BP)(T_{m} + 460)}_{(V_{m})(BP + \Delta H/13.6)(T_{c} + 460)} = \underbrace{(523)}_{(V_{m})(BP + \Delta H/13.6)(T_{c} + 460)}_{(S : 20^{2})(S : 28 : 32 + .80 / 13.6)(S = 460)}_{(S : 20^{2})(S : 28 : 32 + .80 / 13.6)(S = 460)}_{(S : 18)} = \underbrace{(74, 535, 374 = 0.9747)}_{76/470, 1600 \times}_{(S : 18)}$ $Y = \underbrace{(.99463)_{(S : 022)}_{(S : 28 : 32 + .90)}_{(S : 18)}_{(S :$

<u>Y Factor</u>

0.9763

Ĺ.

<u>Variation</u> (± 0.02 Allowed From Average Y)

+.0004 X

+.0020

- . 0024

Avg Y 0.9742

$$\Delta H = \frac{(0.0317) (\Delta H)}{(Pb) (T_{mo} + 460)} \cdot \begin{bmatrix} (T_w + 460) (\Theta) \\ (Y_c) (V_c) \end{bmatrix}^2 = \frac{(518)}{(Y_c) (Y_c)} = \frac{(518)}{(Y_c) (Y_c)} = \frac{(518)}{(Y_c) (Y_c) (Y_c)} = \frac{(9172)}{(Y_c) (Y_c) (Y_c)} = \frac{(9172)}{(Y_c) (Y_c) (Y_c) (Y_c) (Y_c)} = \frac{(9172)}{(Y_c) (Y_c) (Y_c) (Y_c) (Y_c) (Y_c) (Y_c)} = \frac{(9172)}{(Y_c) (Y_c) (Y$$

L

Post Test	
Meter Box Audit	
Woodstove Data Sheet #32	1

1_

í

Unit: Optimum Date: 130/17 Technician: MM ESS WST9-Form2, Rev 6/11

Test Data										
Run #	· 1	2	3	4	5	6	7	8	9	10
Avg.∆h	.90						1			· · · · · · · · · · · · · · · · · · ·
Max Vac	0			·····						
Avg. Test S Audit Dry Test Dry G	Series ∆h Gas Met as Meter	: 90 er Mfr: 6 Mfr: 7	2 in I Rockeu Rockeu	H ₂ O. Test 1e .e.	: Series N SN: <u>1 0</u> : SN: <u>30</u> :	1ax Vac: 52202 39270	D Correc Correc	in Hg tion Facto tion Facto	or (Y):, or (Y):,	9963
BP ("Hg): Vac("Hg):				_2	Audit #1 8.72 0	Audit 	Data Audi 	t #2]: l	Au 28 2	idit #3
Audit Mete	er:	Final V Initial V Vol (Va	′ol Vol ., Ft ³)	ا <u>ما</u> ما	e.047	$\frac{1}{\lambda}$	-71. lele. 5.0	283 261	74	<u>, 920</u> <u>545</u> 291 X
Audit Mete	r		, ,	<i></i>				her have	<u> </u>	
Temp (°F) ((Tc)	Initial Mid Final			57 57 58	— — —	<u> </u>	7 >	5 5	7 2.5 8 X
∆h("H ₂ O)		Avg (°F Initial Mid	?/°A)	<u>57</u> ,90	3 (51 10	<u>1</u> 3)' 	<u>5740</u> .90 .90	<u>517)</u> 4	<u>57</u> .90 .90	<u>5 ⁽(5)</u> ,5)
Dry Gas Me	ter:	Final Avg Final Vc Initial V Vol(Vd)	ol 'ol (ft ³)(m ³)		10 90× 36,56 31.100, 41.100,		.90 .90 .91 .92.1 .92.1 .032.0	2-1 2-1 800 4 X	.9(.9 .648 .642) 0 x 134 400 24 X
Dry Gas Me	ter	Initial			z Z		 	<u> </u>	78	<u></u>
Temp ($^{\circ}$ F) : :	Inlet	Mid			76		- 78		80	
(T_m)		Final	.		78	-, X	80		81,	×X
Dry Gas Met Temp (°F) : ((T _m)	ter Outlet	Avg(°F/ Initial Mid Final Avg(°F/	°A) °A)	_75. 7 7	3 <u>(535)</u> 2 6 2 5 (535)	3) ` - - - - - -	78.3°(77 78 80 78.3°(s	538.3) 	79.77 78 80 81 79.7*	<u>539.7)</u> (539.7) [*]
Avg Dry Gas Meter Temp (Time (minute	(T _m - °F. es)	/°A)		<u>75,3</u> 10	X (535.2 :03	X V	78.3 5 9:46	38,3)7	79.7	(539.7) ^K

Note: If volume is in m^3 , multiply by 35.314667 to obtain ft^3 . Note: Add 460° to all temperatures for degrees Absolute.

$$Y = \frac{(V_c)(MCF)(BP)(T_m)}{(V_d)(BP + \Delta h/13.6)(T_c)}$$

$$Y = \frac{(V_c)(MCF)(BP)(T_m)}{(V_d)(BP + \Delta h/13.6)(T_c)}$$

$$Y = \frac{Act - Exp}{Exp} \times 100$$

$$T = \frac{1}{Optimum}$$

Note: MCF = Meter Correction Factor (Y) for Dry Gas Meter used as a Transfer Standard

1....

ł

TM

-16,25

.274

Determination of Interpolated Y Factor for Average Certification Test Series ∆ H from Dry Gas Meter Calibration Data:

$$\frac{90}{(A)} \text{ inch } H_2O \Delta h = \underline{, 9692}_{C} Calculated Calibration Y Factor (from Calibration)} \\ \hline (A) & \text{inch } H_2O \Delta h = \underline{, (C)}_{C} (from Calibration) Y Factor (from Calibration)} \\ \hline (B) & (D) & (from Calibration) \\ \hline (B) & (A) & (C) & (F) & (C) & (C) & (F) & (F) \\ \hline (B) & (A) & (C) & (C) & (C) & (F) & (F) \\ \hline (B) & (A) & (C) & (C) & (C) & (F) & (F) \\ \hline (B) & (A) & (C) & (C) & (C) & (F) & (F) \\ \hline (B) & (A) & (C) & (C) & (C) & (F) & (F) \\ \hline (C) & (C) & (F) & (F) & (F) & (F) \\ \hline (C) & (C) & (F) & (F) & (F) & (F) & (F) & (F) \\ \hline (B) & (A) & (C) & (F) & (C) & (C) & (F) & (F$$

. 2.74

.000

vised 7/11

			Revis
Data			

Dry Gas Meter Calibration Data									
Date: 11/17/16 Technician: ESS									
Calibratio	on Meter Mfr:	Rockwel	SN:	1052202		Y: 0.9	963		
Meter Bo	x ID <u>511</u>	- M	Meter Mfr:	Rockwel	1	SN: <u>32</u>	2914	. <u></u>	-
Electrical	Check <u>ok</u>		Pitot Leak Cho	eck OK/			·		
Leak Che	ck Front Ha	alf <u>OK</u>		Back Half	OKV				
$BP = \underline{28}$	7. <u>59</u> in. H	Ig					· .		
Orifice		Gas Volume	· · · · · · · · · · · · · · · · · · ·		Temper	ature		Time	
(Δh)		Cal.	Dry Gas		Cal.	Dry Ga	s Meter	(Θ), Min	
H_2O		Meter	Meter		Meter	Inlet	Outlet	191111.	
		(VC), (cu.ff.)	(Vm), $(m^{3})(ft^{3})$		(1¢), °F	(Tmi),	(Tmo),		
		(cuirti)				(°F) (°C)	(°F)(°C)		
סרי	initial	955.887	880,000	initial	51.5	53	53	13:30	1
סרי	final	962.139	886.631	mid	51.5	54	53	(13.5)	.484
1				final	52	55	53		* **
. ,0	total	6.2521	6.531	avg. `	51.7K	544	534	53.51	
					511.4	814	513	513.5	
1.75	initial	962.590	887.100	initial	52	55	54	11:15	1198
.75	final	968.036	892,700	mid	52	56	54	(11.25)	1 1 10
.75				, final	52	51	55	~~ 2×	***
	total	5.446	5.000 1	avg.	<u>577</u>	56	514 2	515.2	
-80	initial	9128 581	893,200	initial	52	56	54		•
on	final	973, 776	000117	mid	52	57	55	10:15	.518
.80			878.612	final	52	57	55	([0.25)	
.80	total	5.1451	5.312	avg.	52'	56.7	54.7×	55.7	*
					512	516.7	514.7	515.7	
.85	initial	5,981	899.400	initial	55	57	56	10:00	529
. 85	final	11,180	904.789	mid	54.5	28	57	(10.0)	-55)
85				final	54.5	58	57	X	194 ¹
	total	5,1941	5:3891	avg.	54.71	57.7	56.7	57.2	and the second se
	· · · · · · ·				2.14.14		516.4	J142	-
	final			mid					
	1111241			final	<u></u>				
	total		· ·	avg.					
L		<u> </u>	<u></u>			I	L		

T2

Y = (Y)(Vc)(Pb)(Tm + 460) $(Vm)(Pb + \Delta h/13.6) (Tc + 460)$

(____

i

 $\Delta h @= \frac{(0.0317)(\Delta h)}{Pb(Tmo + 460)} [(Tc + 460) (\Theta)] / [(Vc)(Yc)]^{2}$

BACK	Half Leak	Chicke	11/16/16
¥.,	Story	Sdop	A
Legi	6.96	6.96	0,00
Leg 2	7.45	7.45	0,00

212V 11/17/10 Front Half Leak Check VAC START STOP

faria.

 VAC
 START
 STOP
 CFM

 IDGM
 -16.1
 .7355
 .7355
 .000

 TM
 -16.1
 .315
 .315
 .000

Meter Box: <u>511 - M</u> Date: 117/16 Page: 2 of 3 Rev 6-10

Meter Box Calibration Page 2

 $Y = (Y_c)(V_c)(BP)(T_m + 460)$ $(V_m)(BP + \Delta H/13.6)(T_c + 460)$ (513.5 $\frac{59}{(13.6)(51.7+460)} =$ q y 28.59 (6.53 511 Y = (.9963)V 28.59 /13.6)(52 + 460) (5,600 82,13 (512)-(515.7) 0.9700 (35.7 + 460) = 75Y = (Y 28. 77,917,466 180 /13.6) 52 +460))(28. (5312 512 (57.2)(57.2+460) = 74x =0,9637 28.5 $\mathbf{Y} = \mathbf{0}$ + .85 /13.6)(54.7 + 460))(2815 (5.389 514.7 . $\frac{+460}{+460}$ = Y = (X /13.6)(X

 Y Factor
 Variation
 (± 0.02 Allowed From Average Y)

 0.9554
 -0.0102

 0.9731
 ± 0.0075

 0.9700
 ± 0.0044

 0.9637 -0.0019

Avg Y _0,965

(.....

			METER BOX	511-M
			DATE 11/17/	6
-			Page 3 of 3	
∆ H@ =	$(0.0317) (\Delta H)$. (Pb) (T _{mo} + 460)	$\frac{(T_w + 460)}{(Y_c)}$	$\frac{(\Theta)}{V_{\rm c}} \right]^2 =$	
∆ H@ =	$\frac{(0.0317)(70)}{(28.59)(53+460)}$	· [(51.7 +	7) - 460) (13.5) 3) (4.252, X] ² = <u>1.860</u> 8 ×
∆H@ =	$ \underbrace{(0.0317)(.75)}_{(28,59)(54,3+.460)} \underbrace{(514,3+.460)}_{(514,3)} $	$ = \begin{bmatrix} (512) \\ (52) + \\ (996) \end{bmatrix} $	460) (11,25) 3) (5,446)	$\int 2^{2} = 1.8222$
∆H@ =	(0.0317) (.80) (28.59) (54.7+ 460) (574.7)	· [(52 +	460) (10.25) 3) (5.145)	$\int 2^{2} = 1.8064 $
∆H@ =	$\frac{(0.0317)(.85)}{(28.59)(56.7+460)}$	· [<u>(54.7+</u> (.996)	460) (10.0) 3) (3.199 X	$\int 2^{2} = \frac{1.8010}{100} \times$
∆ H@ =	$\frac{(0,0317)}{()}() + 460)$	· [(+	<u>460)()</u>)	2 =

(...

	Post Tes Meter Box A Woodstove Data S	t udit Sheet #32	T2	U: D: Te W	Unit: 0 p+ima M Date: $1/30/17$ Technician: ATM ESS WST9-Form2, Rev 6/11						
	М	eter Box Calib Test Data	oration Aud	lit		,					
Run # 1	2 3	4 5	6	7	8	9	10				
Avg. Ah . 80											
Max Vac -2.15											
Avg. Test Series Δh :											
Audit Dry Gas Mete	er Mfr: Rock-up	ell SN·10	51702	Correct	Factor	· (V)· .9	963				
Test Dry Gas Meter	Mfr: Kockwe	SN: 3	22914	Correct	ion Factor	r (Y): <u>,9(</u>	056				
		Andit	Audit] #1	Data	#2	٩٠٠٩	1:+ #2				
BP ("Hg):		28,6	9	28.6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	28.	11 #3 68				
Vac("Hg):		- 2.2	5	-2.2	5	-2.2	5				
Audit Meter:	Final Vol	120.91	3	126.3	73	131.	780				
	Initial Vol	115.82	27.	121.2	16.	126,1	679				
	Vol (V_c , Ft^3)	5.09	2×	5.07	X	5.10	11/				
Audit Meter			,								
Temp (°F) (Tc)	Initial	6		0 ما							
	Mid	60.5	·	60		60.	5				
	Final	60.5	X	. 60 .	<u>s</u> x	(le]	<u>+</u> X				
	Avg (°F/°A)	60.7 (5	20.7)	60.2	(520.2)	.0یا	<u>8 (52</u> 0.8)				
$\Delta h("H_2O)$	Initial	.80		.80		.80	<u> </u>				
	Mid			<u>80</u>	<u></u>	.80	l 				
	Final	- <u>80</u>	V	. 80	- \ -	.80	<u>></u>				
	Avg		<u>^</u>	. 80	<u>, ~</u>	.80	<u>></u>				
Dry Gas Meter:	Final Vol	388.61	0	394,2	82	399.8	99				
	Initial Vol	383.3	$\frac{00}{V}$	389.00	N Co	394.6	$\underline{\infty}$				
	$Vol(V_d)(ft^3)(m^3)$	<u>_5.31D</u>	1	5.28	2 4	5.29	1				
Dry Gas Meter	Initial	<u> </u>				65					
Temp (°F) : Inlet	Mid	64		<u> 65 </u>		لول_	. <u> </u>				
(T_m)	Final	65		66	}	<u>()(e</u>	x)				
	Avg(°F/°A)	64.3 (5	24.3)	657 (5	525)	65.7	<u>(52</u> 5.7)				
Dry Gas Meter	Initial	_63_		64		_64_					
Temp (°F) : Outlet	Mid	_03_		64		64_					
(T_m)	Final	<u>122</u>	72 2 X	$-\frac{64}{1.0 \times 10}$	1117	<u>(45</u>	X X				
Ava Dev Coo	Avg(^r / [*] A)	25 6,00	<u>600)</u>	6716	2692) حراجط	<u>2670)</u>				
Avg Dry Gas	C/0 A)	120×1-	72 214	WEY.	COU EN	LE XIE	X				
Time (minutes)	17 25.J	10,00	روس	$\frac{\psi (\cdot \cdot \cdot \cdot)}{(1 \cdot \cdot \cdot \cdot \cdot)}$	<u>2619</u> 1		<u>~</u>				
Time (minutes)		10:00		_10:00	l	10:00	2				

Note: If volume is in m^3 , multiply by 35.314667 to obtain ft^3 . Note: Add 460° to all temperatures for degrees Absolute.

j.

Ĺ

į

$$Y = \frac{(V_c)(MCF)(BP)(T_m)}{(V_d)(BP + \Delta h/13.6)(T_c)}$$

$$Y = \frac{(V_c)(MCF)(BP)(T_m)}{(V_d)(BP + \Delta h/13.6)(T_c)}$$

$$Y = \frac{(V_c)(MCF)(BP)(T_m)}{Exp}$$

$$Y = \frac{(V_c)(MCF)(BP)(T_m)}{T_2}$$

$$Y = \frac{(V_c)(MCF)(BP)(T_m)}{T_2}$$

Note: MCF = Meter Correction Factor (Y) for Dry Gas Meter used as a Transfer Standard

(.....

Run 1

$$Y = (5.092)(-9963)(28.69)(523.8) = -76,238.539 = 0.9591$$
 $(5.310)(28.64 + .80/13.6)(520.7) = 79,488.111$
 $\Delta\% = (-9591) = .9666$
 $Y = (5.077)(-9963)(28.68)(520.7) = .76,089.010$
 $Y = (5.077)(-9963)(28.68)(520.2) = .76,089.010$
 $Y = (5.077)(-9963)(28.68 + .80/13.6)(520.2) = .78,965.562 \times$
 $A\% = (-9636) = .9666$
 $Y = (5.101)(-9963)(28.68 + .80/13.6)(520.7) = .0.31$
 $Y = (-9648)(--9166)(--913)(--90.18)$
 $Y = (-9648)(--9166)(--916)(--90.18)$
 $Y = (-9648)(--9166)(--913)(--90.18)$
 $Y = (-9648)(--9166)(--916)(--90.18)$
 $Y = (-9048)(--9166)(--916)(--90.18)$
 $Y = (-9048)(--9166)(--916)(--90.18)(--90.40)(-$

Determination of Interpolated Y Factor for Average Certification Test Series Δ H from Dry Gas Meter Calibration Data:

$$\frac{.80}{(A)} \text{ inch } H_2O \Delta h = \underbrace{.9666}_{(C)} \text{ Calculated Calibration Y Factor} \\ (from Calibration) \\ \hline (B) \text{ inch } H_2O \Delta h = \underbrace{.}_{(D)} \text{ Calculated Calibration Y Factor} \\ (B) \text{ inch } H_2O \Delta h = \underbrace{.}_{(D)} \text{ (from Calibration)} \\ \hline (B) \text{ (a) } = \underbrace{.}_{(D)} \text{ (from Calibration)} \\ \hline (B) \text{ (c) } = \underbrace{.}_{(A)} = \underbrace{.}_{(E)} \text{ (d) } \text{ (c) } = \underbrace{.}_{(E)} = \underbrace{.}_{(F)} \\ \hline (B) \text{ (d) } = \underbrace{.}_{(A)} = \underbrace{.}_{(E)} \text{ (d) } \text{ (c) } \text{ (c) } = \underbrace{.}_{(E)} = \underbrace{.}_{(F)} \\ \hline (B) \text{ (d) } = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(E)} \text{ (d) } \text{ (c) } \text{ (c) } \text{ (e) } \text{ (fr) } \\ \hline (B) \text{ (for Calibration)} \\ \hline (B) \text{ (d) } = \underbrace{.}_{(A)} = \underbrace{.}_{(E)} \text{ (d) } \text{ (from Calibration)} \\ \hline (B) \text{ (d) } = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(E)} \text{ (fr) } \text{ (fr) } \\ \hline (B) \text{ (d) } = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(B)} \text{ (fr) } \text{ (fr) } \\ \hline (B) \text{ (fr) } = \underbrace{.}_{(G)} = \underbrace{.}_{(G)} \\ \hline (B) \text{ (fr) } = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(G)} \text{ (fr) } \\ \hline (B) \text{ (fr) } = \underbrace{.}_{(G)} = \underbrace{.}_{(G)} = \underbrace{.}_{(G)} \\ \hline (B) \text{ (fr) } = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(G)} = \underbrace{.}_{(G)} \\ \hline (B) \text{ (fr) } = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(G)} = \underbrace{.}_{(G)} = \underbrace{.}_{(G)} = \underbrace{.}_{(G)} \\ \hline (B) \text{ (fr) } = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(A)} = \underbrace{.}_{(G)} = \underbrace{.}_{(A)} = \underbrace{.}_{(A$$

	T3	Revised 7/11	
	Dry Gas Meter Calibration Data		
Date: 1/16/16	Technician: ESS		
Calibration Meter Mfr: <u>Pockwe</u>	11 SN: 1052202	Y: 0.9963	
Meter Box ID Train 3	Meter Mfr: Kinnon	SN: 8000571	•
Electrical Check <u>OK</u>	Pitot Leak Check <u>DK</u>		
Leak Check Front Half OK	Back Half_0K_	·	
BP = 28.32 in Hg			

1

(...

Orifice		Gas Volume			Time				
(Δh) in.		Cal.	Dry Gas		Cal.	Dry Ga	s Meter	(⊕), Min.	
H ₂ O		Meter	Meter (Vm)		Meter (Tc)	Inlet	Outlet	1	
		(vc), (cu.ft.)	(m^3)		°F	(Tmi),	(Tmo),		
							(°r)(***)		
,100	initial	896.670	308.4400	initial	le	65.	64	(11.20)	
,100	final	901.684	308.5858	mid	tel	67	64	1133	and the second s
			.1458m3	final	lely	67	165 X		
. 100	total	5.014×	5.149X	avg.	612	66.3	64.3	653	575
			,454 ch		521	,		1. 1. 1. 1. 1. 1. 1.	
011.	initial	903.211	308,6300	initial	61	lde	64	11715	
10	final	908,552	308.7851	mid	Le l	67	64	(11.25)	
.110			-1551 m-	final	61.5	108	65		
	total	5.3111	5.447 x	avg.	61.2	671	64.3	65.7	520
			.484 cfm		521.2				
1120	initial	909,241	308,8000	initial	60.5	63	63	10:30	
120	final	914.496	308,9576	mid	60	124	63	(10.5)	
110		V	.1520m ²	final	60,	165	63	<u> </u>	
.120	total	5.255 *	5.3891	avg.	60.2	64 X	43×	63.5	5 23,
			-5132 cm	N	520.2				
.135	initial	915.483	308.860	initial	10.5	64	63	quie !	
,135	final	920.669	309,1304	mid	60	66	63	9.55)	
125		v	1501	final	60.5	67	64		· · · · · ·
.19	total	5.1861	5.311	avg.	60.3	65.71	63.3	64.51	23,
	-		.545 ctm		520.3				
	initial			initial					
	final		-	mid	. <u></u>				
				final					
	total			avg.					

Y = (Y)(Vc)(Pb)(Tm + 460)(Vm)(Pb + $\Delta h/13.6$) (Tc + 460) $\Delta h @= (0.0317)(\Delta h) [(Tc + 460) (\Theta)] / [(Vc)(Yc)]^{2}$ Pb(Tmo + 460)

Back Half Leak Check Steer Stop A 8.16 "HO 8.16 "HO 0.00 "HOO From Half Look Checke Needing Leak Rode Vac Meter Reading Leak Rode Staur Stap cmm cfm in Ha ,0001 ,004 . 41322 - 17.9 .4321 OGM .003 , 404 .401 - 17.9 T M

ŕ

.

(. ...

Meter Box: Train 3 Date: 11/16/16 Page: 2 of 3 Rev 6-10

Meter Box Calibration Page 2

 $Y = (Y_c)(V_c)(BP)(T_m + 460)$ $(V_m)(BP + \Delta H/13.6)(T_c + 460)$ 525.3 28.33 53+460) $Y = \frac{1}{2}$ 76,018.605 100 /13.6)((525.7 631 5. Y = (V 65.7 +460 110 /13.6)(la \.2. + 460), 80,451.16 521.2 523.5 Y= (.9963 11 5.255 +460) = 77,647.256 = + ,120 /13.6)(60.2 +460) (5.389)(28.33 79.443 570.2 24.5 Y= (,9963 Y 5 X 64.5 +460) = 7.135 /13.6)(60.3 + 460) (520.3) (5.311)(28.3 +460) = +460) Y = (<u>)(</u>)(<u>)(</u> /13.6)(+

Avg Y 0.980

(....

				METER BOX Train 3 DATE 11/16/16 Page 3 of 3
∆н@	. =	$\frac{(0.0317)(\Delta H)}{(Pb)(T_{mo} + 460)}$	<u>T</u> w	$\frac{+ 460}{(Y_c) (V_c)} = \frac{2}{2} = \frac{1}{2}$
∆н0	I	$\frac{(0.0317)(-100)}{(28.33)(64.3+460)}$		$\frac{(521)}{(.9943)(5014)}^{2} = 0.2980 \times$
∆н0	Ħ	$\frac{(0.0317)(.110)}{(28.33)(.413+460)}$		$\frac{(521.2)}{(.01.2 + 460)(11.25)}^{2} = 0.2850^{12}$
∆н0	=	$\frac{(0.0317)(.120)}{(28.33)(63+460)}$		$\frac{(520.2)}{(10.2 + 460)(10.5)}^{2} = 0.2794 \times (5.255)^{2}$
∆н0	=	$\frac{(0.0317)(.135)}{(28.33)(.133+460)}$	_ _	$\frac{(100,3+460)(9,75)}{(19963)(5,186)}^{2} = 0.2783^{2}$
∆н0	=	$\frac{(0.0317)()}{()()+460)} \cdot \left[\frac{(0.0317)()}{()()+460)} \right]$	 -	$\frac{(+ 460)()}{()()}^2 =$

<u>Ah@</u>	VARIATION (± 0.20 ALLOWED)
0.2980	+.0128 X
0.2850	-0,0002
0.2794	-0.005B
0.2783	0069
•	

AVG AHE 0.2852 X

Ć.

Post Test Meter Box Audit Woodstove Data Sheet #32

ŧ.,__.

1

Į

.

Unit: Op Hymera Date: 1/30/17 Technician: AM ESS WST9-Form2, Rev 6/11

			Ν	Aeter Bo Te	x Calibra st Data	tion Au	dit				
Run #	1	2	3	4	5	6	7	8	9	10	
Avg.∆h	,12							1			
Max Vac	-20										
A T	1	01	7 . ,			· · ·	- 10	• • •	•	L <u></u>	
Avg. Test S		1:	$\frac{2}{O}$	H_2O . les	t Series N	lax Vac:	- 7.0	_in Hg		0010	
Audit Dry (Gas Met	ter Mfr:	Koele	wen	SN: 109	5 220	2 Correc	tion Facto	or (Y):	1465	
Test Diy Ga		I IVIII	JC V VIL		214: 6 6	Audit	Data	tion race	or (r):	1002	
					Audit #1		Audi	t #2	Au	idit #3	
BP ("Hg): Vac("Hg):					-2.0		-28.	70	- 7	0	
<i>(uc(115)</i> .											
Audit Meter	r:	Final V	Vol	10	2.231		108.4	89	14.4	549	
		Initial	Vol	<u>9</u>	7.175	¥	103.3	78	109.6	121	
4 11 3 4 4		Vol (V	c, Ft ³)		5.050	1	. []	1~	5.1	28 1	
Audit Meter	r m	.				-			1	~ <	
Temp (*F) (10)	Initial			57.5		_60_			<u>)./</u>	
		Ivina Final		•				<u>.</u>		n 5	۱.
			F/ºA)		2×/519	X		(En)		VEREN	1
ለከ(""ዘታወ)		Initial	IT AJ		$\frac{10}{2}$	- U	.12		.12	<u>(2,0,2)</u>	1
		Mid		<u>, , ,</u>	12		12	•	<u>, i</u>	2,	
		Final			.12		.12			2	
		Avg			112 ×		,12	X	1	127	
Dry Gas Me	ter:	Final V	⁄ol	322.	2466		322.42	82	322.6	038	
		Initial '	Vol	322.	1000	_ X	322 2 80	<u>x_@</u>	- 322.4	550	X
		Vol(V _d	(m^3)	. <u>146</u>	do (5,1	(<u>רר</u>	1482 (<u>5.234</u>)'	1488	(5.255)	1
Dry Gas Me	ter	Initial			65		<u> </u>		69	5	
Temp ($^{\circ}$ F) :	Inlet	Mid		(<u></u>		<u> </u>	2	
(T_m)		Final		(ele	+	66		<u> ζ</u>	X	
		Avg(°F	'/°A)	65	<u>.7 (525</u>	<u>.</u> 7) '	65.51	<u>525.3</u>)	66	(526)	
Dry Gas Me	ter	Initial			<u>65</u>		63		69		
$\operatorname{Iemp}(^{\circ}F):$	Outlet	Mid Timel			65	 • • • •	<u> </u>		<u>حات</u> اما	<u>.</u>	
(1_m)		Final Avg(°E	/ 0 A)		102 157:	\overline{X}	1.2 2 1	<u> </u>	<u>المعالم المعالم المعا</u>	(Equit	
Avg Dry Gas	2	Avg(I	/ A)				V <u>oicu</u>		<u></u> Y		
Meter Temp	(T _m - °	F/°A)		64	3 1524	3)	64.31	5243)	165	(525)*	
Time (minut	es)			10	00:00		10:0	0	10:	01	

Note: If volume is in m^3 , multiply by 35.314667 to obtain ft^3 . Note: Add 460° to all temperatures for degrees Absolute.

$$Y = (V_c)(MCF)(BP)(T_m)$$

(V_d)(BP + Δ h/13.6)(T_c)
$$WST9-Form2, Pg 2, Rev 5/10$$

Y Factor % Difference = Act - Exp X 100
Exp $Optimium$

Note: MCF = Meter Correction Factor (Y) for Dry Gas Meter used as a Transfer Standard

$$\frac{\text{Run 1}}{\text{Y} = (5.056 \text{)}(.9963 \text{)}(.28.70 \text{)}(.524.3 \text{)}} = \frac{75.798.416}{77,255.576 \text{ X}} = \frac{0.9811}{(5.17777)(.28.707+.120/13.6)(.519.8)} = \frac{75.798.416}{77,255.576 \text{ X}}$$

$$\Delta\% = (.981) - .9491 \text{)} \times 100 = -40.31 \text{ %}$$

$$\frac{\Lambda\%}{(.9791)} = \frac{10.622.755}{(5.234 \text{ })(.28.70+.12/13.6)(.520,.)} = \frac{76.622.755}{78,136.231 \text{ X}} = \frac{0.9806}{(5.234 \text{ })(.28.70+.12/13.6)(.520,.)} = \frac{76.922.755}{78,136.231 \text{ X}} = \frac{0.9806}{(5.251 \text{ })(.28.70+.12/13.6)(.520,.)} = \frac{76.953.423}{78,136.231 \text{ }} = \frac{0.9806}{(5.2557)(.28.64, + .12/13.6)(.520.5)} = \frac{76.953.423}{78,1497.811 \text{ }} = \frac{0.9803}{(5.2557)(.28.64, + .12/13.6)(.520.5)} = \frac{76.953.423}{78,1497.811 \text{ }} = 0.9803 \text{ }$$
Note: The Y Factor % Difference must be < ±5.0% to be acceptable. Avg. $\Delta\% = -40.25$

Determination of Interpolated Y Factor for Average Certification Test Series ∆ H from Dry Gas Meter Calibration Data:

$$\frac{120}{(A)} \text{ inch } H_2O \Delta h = \underbrace{.978 \text{ (C)}}_{(C)} (from Calibration Y Factor} (from Calibration) = \underbrace{.000}_{(B)} \text{ inch } H_2O \Delta h = \underbrace{.000}_{(D)} (from Calibration) = \underbrace{.000}_{(F)} \text{ (F)} = \underbrace{.000}_{(F)} \text{ (F)}$$

S-110-1052202 M ulti

ulting AS72985.xls

						USIN	G WET-TEST ME	TER #11AE6						
			1				Myren Consu	ពេញ						
Calli	bration Meter In	formation				Calil	bration Conditions					Factors/Convers	ions]
WTM N	Nodei #	AL20			Date	Time	4-Apr-16	8:30			Std Temp_	528	٩R	
WTM S	Serial #	11AE6	· ·		Barometri	c Pressure	29.69	in Hg			Std Press	29.92	in Hg	
WTM G	Gamma	0.9999			Calibrat	ion Tech	EW				К,	17.647	°R/in Hg	
Original 15	Original 15Pt Gamma 0.9963 DGM Serial Number S-110-1052202													
			_											
	r				Calibra	tion Data							Results	
Dun Time			Hotoday Co.	ncolo	Calibration Meter Day Gas Meter									
	· · · · · · · · · · · · · · · · · · ·		inetering Co	lisule					nation meter				Dry Gas Meter	
	DGM Input	Volume	Volume	Volunie	Outle	t Temp	Volume	Volume	Volume	Outle	t Temp	Calibra	Dry Gas Meter	Flowrate
Etapsed	DGM Input Pressure	Volume Initial	Volume Final	Volume Sample	Outle Initial	t Temp Final	Volume Initial	Volume Final	Volume Sample	Outle	t Temp Final	Calibrat Previous	ton Factor Current	Flowrate Std & Corr
Elapsed (©)	DGM Input Pressure (P _m)	Volume Initial (V _m)	Volume Final (V _m)	Volunie Sample (V _{m)}	Outle Initial (t _{mi})	t Temp Final (t _{ml})	Volume Initial (Vwi)	Volume Final (Vw _r)	Volume Sample (V _m)	Outle Initial (t _{ed})	t Temp Final (۱٫۰٫)	Calibrat Previous (Y)	tion Factor Current (Y)	Flowrate Std & Corr (Q _{m(sld)(corr}))
Etapsed (O)	DGM Input Pressure (P _m) in H ₂ O	Volume Initial (V _{ml}) cubic feet	Volume Final (V _{ml}) cubic feet	Volume Sample (Vm) cubic feet	Outle Initial (t _{mi}) °F	t Temp Final (t _{mr}) °F	Volume Initial (Vwi) cubic feet	Volume Final (Vwr) cubic feet	Volume Sample (V _m) cubic feet	Outle Initial (t _{ul}) °F	t Temp Final (t _{yr}) °F	Calibrat Previous (Y)	tory Gas Meter ton Factor Current (Y)	Flowrate Std & Corr (Q _{m(sld)(corr})) cfm
Etapsed (Θ) min 6.00	DGM Input Pressure (P _m) in H ₂ O -3.6	Volume Initial (V _{mi}) cubic feet 508.805	Volume Final (V _m) cubic feet 514.920	Volume Sample (V _m) cubic feet 6.115	Outle Initial (t _{mi}) °F 69.8	t Temp Final (t _{ml}) °F 71.6	Volume Initial (Vwi) cubic feet 380.520	Volume Final (Vwi) cubic feet 386.540	Volume Sample (V _m) cubic feet 6.020	Outle Initial (t _{wl}) °F 70	t Temp Final (tیہ) °F 70	Calibrat Prevlous (Y) 0.9955	Dry Gas Meter ton Factor Current (Y) 0.9946	Flowrate Std & Corr (Q _{m(sld)(corr)}) cfm , 0.992
Etapsed (Θ) min 6.00	DGM Input Pressure (P _m) in H ₂ O -3.6	Volume Initial (V _{ml}) cubic feet 508.805	Volume Final (V _{ml}) cubic feet	Volunie Sample (V _m) cubic feet 6.115	Outle	t Temp Final (t _{ml}) °F 71.6	Volume Initial (Vwi) cubic feet 380.520	Volume Final (Vwr) cubic feet 386.540	Volume Sample (V _m) cubic feet 6.020	Outle Initial (t _{ud}) °F 70	t Temp Final (لیہ) °F 70 Variation	Calibra Previous (Y) 0.9955 0.09%	Dry Gas Meter son Factor Current (Y) 0.9946 must be less	Flowrate Std & Corr (Q _{m(eld(torr)}) cfm , 0.992 s than 1.5%
Etapsed (☉) min 6.00	DGM Input Pressure (Pm) in H ₂ O -3.6	Volume Initial (Vm) cubic feet 508.805	Volume Final (V _m) cubic feet 514.920	Volume Sample (Vm) cubic feet 6.115 5.583	Outle Initial (t _m) °F 69.8 71.6	t Temp Final (t _{ml}) °F 71.6 71.6	Volume Initial (Vw) cubic feet 380.520 386.540	Volume Final (Vwi) cubic feet 386.540 392.140	Volume Sample (Vm) cubic feet 6.020 5.600	Outle Initial (t _w) °F 70 70	t Temp Final (لیہ) °F 70 Variation	Calibrat Previous (Y) 0.9955 0.09% 0.9988	Dry Gas Meter ton Factor (Y) 0.9946 must be less	Flowrate Std & Corr (Q _{m(el3(ten)}) cfm . 0.992 s than 1.5% 0.554
Etapsed (©) min 6.00	DGM Input Pressure (Pm) in H ₂ O -3.6	Volume Initial (Vm) cubic feet 508.805 514.920	Metering co Volume Final (V _{m0}) cubic feet 514.920 520.503	Volume Sample (Vm) cubic feet 6.115 5.583	Outle Initial (t _m) °F 69.8 71.6	t Temp Final ((_{mi}) °F 71.6 71.6	Volume Initial (Vwi) cubic feet 380.520 386.540	Volume Final (Vwi) cubic feet 386.540 392.140	Volume Sample (V _m) cubic feet 6.020 5.600	Outic Initial (t _w) °F 70 70	t Temp Final (tw) °F 70 Variation 70 Variation	Calibrat Previous (Y) 0.9955 0.09% 0.9988 1.28%	Dry Gas Meter ton Factor Current (Y) 0.9946 must be less 1.0116 must be less	Flowrate Std & Corr (Q _{m(eld)(corr)}) cfm . 0.992 s than 1.5% 0.554 s than 1.5%

APEX INSTRUMENTS REFERENCE METER VERIFICATION

I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60, App A, Method 5, Paragraph 7.1.2.2, using the Precision Wet Test Meter # 11AE6, which in turn was calibrated using the American Bell Prover # 3785, certificate # F107, which is traceable to the National Bureau of Standards (N.I.S.T.).

Non in Signature

4/4/16 Date

S-110-1052202 Myr

) AlO0062919,xis

·····					-		•			
APEX INSTRUMENTS REFERENCE METER CALIBRATION USING WET-TEST METER #11AE6 15-POINT ENGLISH UNITS										
Calibration Meter for	formation		Calibratic	on Conditions]	F:	ctors/Conversi	ons	2
WTM Model #	AL-20		Date Time	18-Feb-14	<u>9:15</u>		_ Std Temp	528	°R	
WTM Serial #	11AE6		Barometric Pressure	29.8	in Hg		Std Press	29.92	in Ha	
WTM Gamma	0.9999		Calibration Technician	EW		1	K,	17.647	°R/in Hg	
н Алан			DGM Serial Number	S-110-1	052202					
		· · · · · · · · · · · · · · · · · · ·	Calibration Data						Results	
Kun Ime		Dry Gas Meter				Calibration Meter			Dry Gas Mater	

		Meter	Volume	Volume	Samala	Outlet Tomm	Outlast Taxan	Matana		I a state	1		Dry Gas Meter		<u> </u>	ŧ.
	Elapsed	Pressure	Initial	Final	Volume	Initial	Final	toitial	Final	Sample	Outlet Temp	Outlet Temp	Calibrati	on Factor	Flowrate	Ĺ
	(0)	(P)	(V _n)	(V)	(V")	(1)	(t)	(Vw)	(Vw)	(V_)	e a		Value	Variation	Std & Corr	Į.
	trán	in H₂O	cubic feet	cubic feet	cubic feet	۴	7°	cubic feet	cubic feet	cubic feet	%F	 °∓		(Δ1)	(Q _{m(std)(cont})	ł
	5	-5.1	657.117	663.335	6.218	73.4	73,4	677,080	683.140	6.060	68,0	68.0	0.9970	0.00149	1.21	ł
	5	-5.1	663.335	669,550	6.215	73.4	73.4	683,140	689 180	6.040	68.0	68.0	0.0040	0.00132	4.00	ļ
1	5	-5.1	669.550	675.768	6.218	73,4	73.4	689 180	695 230	6.050	68.0	68.0	0:0054	-0.00133	1.20	
ŗ							· · · · · · · · · · · · · · · · · · ·	,		0.000	Passed Ca	libration Fa	0.9955	Averages	1.21 1.21	
	6	-3.7	694:023	699,987	5.964	75.2	75.2	713,145	718.970	5.825	68.0	68.0	0,9990	0.00269	0.97	l
ļ	6	-3.7	699.987	705,997	6,010	75.2	75.2	718,970	724.820	5.850	68.0	68.0	0.9956	-0.00071	0.97	Ļ.,
	6	-3,7	705.997	712,025	6.028	75.2	75.2	724.820	730.680	5.860	68.0	68.0	0.9944	-0.00198	0.97	
								÷ .	-		Passed Ca	libration Fa	0,9963	Averages	0.97	
£ 1	7	-28	712 025	747 674	5 640	75.0	75.0			·	1	· · · · · ·				r
	7	2.0	747.020	700.047	5.049	15.2	15.Z·	730.680	736.190	5:510	68.0	68.0	0.9955	0.00082	0.78	
	. 7	-2.0	717.074	723.317	5.643	75.2	75.2	736,190	741.690	5,500	68.0	68.0	0.9947	0.00007	0.78	
l	- /	-2.8	123.317	/28.975	5.658	75.2	77.0	741.690	747,190	5.500	68.0	68.0	0.9938	-0.00090	0.78	L
					•						Passed Ca	libration Fa	0.9947	Averages	0.78	Ē
	10	-2.0	728.975	734.645	5.670	77.0	77.0	747 190	752.730	5.540	68.0	68.0	0.9986	0.00215	0.55	ľ
	10	-2.0	734.645	740.312	5.667	77.0	77.0	752.730	758.260	5.530	68.0	68.0	0.9973	0.00088	0.55	
. I	10	-2.0	740.312	745.991	5.679	77.0	77.0	758,260	763.780	5.520	68 0	68.0	0.9934	-0.00303	0.55	ĺ
	·	. •									Passed Ca	alibration Fa	0,9964	Averages	0.55	İ
	15	-1.9	675.768	681,868	6.100	73.4	75.2	695,230	701.215	5.985	68.0	68.0	0.9974	-0.00125	0.40	ł
	15	-1.9	681.868	687.947	6.079	75.2	75.2	701 215	707 180	5 965	69.0	69.0	0.0000	-0.00135	0.40	
	15	-1.9	687.947	694.023	6.076	75.2	75.2	707 180	713 145	5:065	69.0	68.0	0.0007	0.00043	0.40	ĺ
						<u></u>	L		110.140	1 0.000	Passed Ca	l <u>00.0</u> alibration Fa	0.9997	0.00092	0.40	
													0.9988	Averages	0.40	İ.

Overall Average Y 0.9963

2/18/14

Sec. August

Date

Note: For Calibration Factor Y, the ratio of the reading of the calibration meter to the dry gas meter, acceptable tolerance of individual values from the average is +-0.02.

I certify that the above Dry Gas Meter was calibrated in accordance with USEPA Methods, CFR 40 Part 60, using the Precision Wet Test Meter # 11AE6, which in turn was calibrated using the American Belt Prover # 3785, certificate # F107, which is traceable to the National Bureau of Standards (N.I.S.T.). Signature

S-110-1052202 Myren

JO0062919.xls

Calibration Date: 2-18-2014

Calibration Technician: EW

Calibration Date: 2-18-2014

Calibration Technician:

VANEOMETER CALIBRATION

Myren Consulting used a Dwyer Model 3480 Vaneometer to measure test chamber air velocity. The manufacturer's specifications for accuracy are \pm 5.0% from 0 to 100 fpm and \pm 10% from 100 to the top of the scale. Myren Consulting insures that the instrument is level and clean prior taking each reading. According to EPA personnel (Westlin, RTP) no further calibration is necessary.

6

DRAFT GUAGE CALIBRATION

Myren Consulting used a Dwyer Model 115 AV, a -0.05 - 0.0 - 0.25'' inclined red oil manometer (readability resolution $\pm 0.001''$ H₂O) to measure the static pressure in the stack. Once leveled and zeroed as per the manufacturer's written operating instructions, the Dwyer manometer is a primary standard and needs no further calibration.

The manometer is leveled and zeroed at the start of each test, checked as necessary during a run to verify that the settings have not changed and again at the end of each test run. The results of these checks are recorded on Woodstove Data Sheet #16 in each individual test.

BAROMETER CALIBRATION

Myren Consulting used a Princo Model 453 SN W14275 Mercury barometer and a Weems and Plath aneroid barometer to measure the barometric pressure (BP). The Weems and Plath barometer was calibrated daily by comparing it to the Princo and adjusting it as necessary. The Princo when calibrated following the manufacturer's instructions is a primary standard and needs no further calibration.

MOISTURE METER CALIBRATION

Myren Consulting uses a Delmhorst J-2000 which was calibrated daily using the "Check" feature. Then the operation of the moisture meter was checked with a Delmhorst Moisture Content Standard Model MCS-1 at 12.6 and 23.8%. The results of these checks are recorded on Data Sheet #10.

The readings obtained with the moisture meter are then corrected as per the manufacturer's written instructions for temperature. If Delmhorst #496 insulated pins are used, the meter is set at 222 using the Set Pin Calibration instructions. The meter is set at 1 for the Species correction. 1 is the setting for D. Fir

Woodstove Data Sheet #26-A CEM Gas Train Response Time Semi Annual Check

Date 11/17/16 Technicians ATTA -**Elapsed Time** CO_2 CO₂ CO_2 CO CO CO O_2 O_2 O_2 Conc.(V) Conc.(V) Conc.(V) Conc.(V) Conc.(V) Conc.(V) Conc.(V) Conc.(V) Conc.(V) Conc.(V) Conc.(V) 0 Seconds .319 321 320 1.75 179 800 15 320 .319 .319 1.76 1.74 1.76 30 . 174 175 74 1.62 1.63 1.64 45 .098 098 .099 .88 ,89 90 60 031 .030 .51 .031 52 53 л.S 75 <u>.005</u> 005 34 006 34 .36 90 004 ,13 004 004 .12 LY 105 003 .07 004 004 .07 06 12 ,002 ,003 . 202 r05 OL ,07-135 001 002 ,002 104 05 .06 150 002 ∞ ,002 .04 .04 .05 165 ,00 l ,001 ,001 .03 .05 .03 180 ,001 ,001 000 .03 ,03 ,03 Ļ N29 Initial Response N40 N40 N 40 Time (seconds) Sec Sec See Sec >60 95% Response >90 675 Time (seconds) > <105 **Analyser** Flow 1.5scfa Rate **Comments:** 95% = LO160 .016 .09 ,09 ,09 ,016 V

WST6-form16,pg4.Rev 1/10

Myren Consulting Inc.

512 Williams Lake Rd; Colville, WA 99114; (509)685-9458

QA WS, REV 1/10

CO ₂ Analyzer
Multipoint Calibration Report Form
Site: Myren Lab, Colville, WA Date: 1/3/2017-
Analyzer: Make: <u>Horiba</u> Model: <u>PIR 2000</u> SN: <u>607204</u>
Calibration by: A.T. Mynen
Cal Gas Flow: <u>1.5 scfh</u> Measured by: Rotameter: X Mass Flowmeter:
BP: "Hg Instrument ID: Princo
Temp: <u>59</u> °F Instrument ID: <u>Omega Digicator</u> Center Stand
Analyzer Last Calibrated: 11/ /2016 By: ATTIMY New
Cylinders:
1. # $DOT 3A4226$ concentration: 0.00 %CO ₂ Cyl. Press.: 1780 psi.
Certified By: Oxonc Date: 2/25/16
2. $\# \underline{EB} \cdot \underline{OO} \cdot \underline{V176}$ Concentration: <u>12.45</u> %CO ₂ Cyl. Press.: <u>960</u> psi.
Certified by: Liquid Technology Corp Date: 4/15/15
3. $\# 250 - 1175$ Concentration: 21.0 %CO ₂ Cyl. Press.: <u>570</u> psi.
Certified by: Dxave Date: 8/92/94
4. $\# \underline{Sx} \underline{+405}\underline{BS}$ Concentration: $\underline{6.04}$ %CO ₂ Cyl. Press.: <u>//40</u> psi.
Certified by: Matheson Tri Gos Date: 4/12/10

Analyzer: Calibrated Range: 0-25 % Output: 0-1.0 v. Flow: <u>1.5 scfh</u> Measured by: Rotameter: <u>X</u> Mass Flowmeter:

					Calibr	ation R	esults					
Point #	Cyl.	%	Expe	ected	Ac	tual	A	dj.	%	Curve	Potenti	ometer
	π.		Meter	DVM	Meter	DVM	Meter	DVM	D11.	Conc.	Unadj.	Adj.
1	1	0.00	000	.000	000	.000		N. STREET	See	Nem	4.5%	topogrammin
2	2	12.45	49.8	,498	48.75	492	18.75	,498	Pa	18	9.26	9.29
3	3	210	84.0	, 840	830	,842	<u>enginen</u> gi	No. of Case,	1	r	SCORE SONES.	THE STATES
4	4	601	24.2	,242	12:0	,23%	ten get starte	100-100 mg			Rect To Pro-	B.C. Carlot
5	1	0.00	000	,000	002	,000	6 83 (242× 7	4° (09732° -	V			1990 m

Comments:

ĺ....

0,500 = 12,5257-839

6

Myren Consulting Inc.

512 Williams Lake Rd; Colville, WA 99114; (509)685-9458

QA WS, REV 1/10

CO Analyzer												
	•	, , , ,		Mult	ipoint C	alibrati	ion Rep	ort For	m			
Site	: <u>(`o</u>	luille	LAB		D	0ate: <u> </u>	13/:	2017				
Ana	lyzer: N	/lake:	CAI		Mo	del:	200		SN:	1 M 1	2002	
Cali	bration	by: <u>A</u>	TM	ynin	ex					·		
Cal	Gas Flo	w: <u>1.5 ds</u>	<u>cfh</u>	 Meas	ured by:	Rotame	eter:	XN	Aass Flo	wmete		
	BP: 28.71 "Hg Instrument ID: Princo											
Temp: 59 °F Instrument ID: Center Stand Digi cartor												
Analyzer Last Calibrated: 11/ /2016 By: AT Double.												
Cylin	ders:		(Law		- (· <u> </u>	<u> </u>	with the start			
1.	# <u>_Q</u> ∂	T 3AA 23	SConce	entration	1: Ö	.00	0/	(CO C	vl Droca	. 17	6A	
	Certi	fied By:	_ Dxau	2 C.		a sugar son	/		D-4-	······································	r <u>oo</u> p	S1.
2.	#£i	00413	ll Conce	entration	• *	1. 1.			_ Date:	 G	<u>03 //6</u> 1 0	
	Certi	fied by:		A		<u></u>	70		71. Press.	:	<u>60</u> p	si.
3.	#250	2-1175	Conce	ntration	<u></u>	no No	<u> 1.836</u>		_ Date:	£_\$	<u>115 14</u>	
	Certif	ied by:	$-\frac{1}{2}$	nuauon	·7.	2	%	CO Cy	I. Press.	: <u> </u>	<u>70 p</u> s	si.
4	# SX	La Mara	Conor	<u>arc</u>					_ Date:	<u>- 87</u>	2219	V.
14	Cortif	ind have a	~ 11	ntration		<u>er 7</u>	%	CO Cy	I. Press.:	. //	$\frac{40}{10}$ ps	i.
	Cerun.	ieu by: <u>/</u>	IN AN	<u>16.50m</u>	1.1.2	<u>\</u> > fi	6%) 302	·	Date:		112/10	2
	A . 1	A 11										
	Analy	zer: Calib	brated Ra	ange: <u>0</u> -	10%		% <u></u> %	6 Outp	ut: <u>(</u>	<u>)-10.0</u>		V.
	Flow:	<u>1.5 dsc</u>	<u>fh</u>	Measu	red by:	Rotame	ter: <u> </u>	<u>K</u> M	lass Flov	vmete	r:	
Deint					Calibr	ation Re	sults	·				
Foint #	Cyl. #	CO	Exp	ected	Ac	tual	A	dj.	Curve	%	Potent	iometer
			Meter	DVM	Meter	DVM	Meter	DVM	Conc.	Dif.	Unadj.	Adj.
1	1	00,00	00,00	0.09	- 08	-0.08	.50	.000	Sec.	Acre	547	672
2	2	2.61	2,61	2.61	271	2.69	2.61	260	1.00		4.90	432
3	3	4.02	4.03	403	4.14	4.11	Sec.	Trudy	1			
4	4	1.29	1.29	1.24	132	1.32	es m ^à	aTSSE.ny			tas an	
5	1	00.0	0,00	0.00	000	0.00	entran.	*****				
Comme	ents:					· · · ·						

 $\tilde{f}_{\infty_{1}}$

Ć,

ł

LIQUID TECHNOLOGY CORPORATIO

"INDUSTRY LEADER IN SPECIALTY GASES"

Certificate of Analysis - EPA PROTOCOL GAS -

Customer Date **Delivery** Receipt Gas Standard Final Analysis Date Expiration Date

OXARC, Inc (Spokane, WA) April 15, 2015 <u> DR-56053</u> 2.50% CO, 12.50% Carbon Dioxide/Nitrogen - EPA PROTOCOL April 15, 2015 April 16, 2023

Component Balance Gas

Carbon Monoxide, Carbon Dioxide Nitrogen

Analytical Data:

EPA Protocol, Section No. 2.2, Procedure G-1.

DO NOT USE BELOW 100 F

Replicate Concentrations Carbon Monoxide: 2.61% +/- 0.02% Carbon Dioxide: 12.45% +/- 0.10% Nitrogen: Balance

Reference Standards: SRM/GMIS: Cylinder Number: Concentration:

Expiration Date:

Component:

Make/Model:

Serial Number:

Last Calibration:

NIST Sample Number:

SRM CAL-017030 4.009% CO (+/- 0.017%) 07/15/19 52-D-54

FTIR

GMIS EB-0051547 9.923% CO2 (+/- 0.062%) 02/04/22 NA

GMIS Traceability SRM-2745 CAL-016193 15.633% CO2 (+/- 0.037%) 06/02/17 9-C-55

Carbon Dioxide Nicolet 6700 APW1100563 FTIR April 04, 2015

Cylinder Data Cylinder Serial Number: Cylinder Volume:

Principal of Measurement:

Certification Instrumentation

EB-0041761 119 Cubic Feet

Carbon Monoxide

Nicolet 6700

APW1100563

April 15, 2015

10 Tana -

Cylinder Outlet: Cylinder Pressure:

CGA 350 1700 psig, 70°F

Analytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-12/531.

Certified by:

Cole Rylendi

Cole Dylewski

PGVP Vendor ID: E1

"UNMATCHED EXCELLENCE"

2048 APEX COURT, APOPKA, FLORIDA 32703 ~ PHONE (407)-292-2990 FAX (407)-292-3313 WWW.LIQUIDTECHCORP.COM

APOPKA, FL • PASADENA, TX

WELDING PRODUCTS INDUSTRIAL SUPPLIES INDUSTRIAL GASES MEDICAL GASES

SPECIALTY GASES **BEVERAGE SYSTEMS** SAFETY PRODUCTS **FIRE EQUIPMENT**

Primary Standard Certificate of Analysis Method of Analysis Micro GC / Gravimetric Customer: Myren Consulting **Reference**# P.O.# Cylinder #

PM7234-2 250-1175

Results of Investigation

Component

Requested

Concentration

Air	N/A	NIZA
Argon	NA	DT/A
Carbon Dioxide	21.0%	<u>IN/A</u>
Carbon Monoxide	4.00%	41.0%6
Helium	N/A	NT/ A
Hydrogen	N/A	N/A N/A
Methane	N/A	NT/A
Nitrogen	Balance	Delemen
Oxygen	21.0%	Dalance

Hazard Class	UN 1956
DOT Shipping Name	Compressed Gas NOS
Shipping Volume (scf approximate)	160 sef @ ntp
Cylinder Pressure	1500 psig
CGA Valve Connection	350

Oxarc Primary Standard mixtures are prepared with gravimetric techniques using weights traceable to NIST. Mixture blended to +/- 1% relative to minor component and certified to +/- 1% analytical accuracy.

Authorized Signature Date <u>8/25/97</u> **Travis** Auger

YAKIMA, WA 98903 1004 EAST MEAD (509) 248-0827 FAX (509) 452-8704

WWW.OXARC.COM

MAIN OFFICE

SPOKANE, WA 99220 4003 E. BROADWAY P.O. BOX 2605 (509) 535-7794 FAX (509) 535-0368

BOISE, ID 83709 7615 W. LEMHI ST. (208) 376-0377 FAX (208) 376-1133

COEUR D'ALENE, ID 83814 3530 RAMSEY RD. (208) 765-3311 FAX (208) 667-5974

> COLVILLE, WA 99114 328 W. 1ST. (509) 684-3776 FAX (509) 684-6742

ELLENSBURG, WA 98926 704 N, WENAS (509) 925-1518 FAX (509) 925-1136

HERMISTON, OR 97838 HERMISTON-MONARY HIWAY (503) 567-7377 FAX (503) 567-2265

4

KENNEWICK, WA 99336 800 W. COLUMBIA DR. (509) 582-4202 FAX (509) 586-9859

LEWISTON, ID 83501 2513 3RD. AVE., NORTH (208) 743-6571 FAX (208) 746-8374

MOSES LAKE, WA 98837 1401 WHEELER ROAD (509) 765-9247 FAX (509) 766-9958

OKANOGAN, WA 98840 2256 ELMWAY (509) 826-3205 FAX (509) 826-3905

PASCO, WA 99302 716 SOUTH OREGON (509) 547-2494 FAX (509) 547-3103

TWIN FALLS, ID 83303 729 COMMERCIAL AVE. (208) 734-9711 FAX (208) 734-7923

VENATCHEE, WA 98801 OHME GARDENS RD. (509) 662-8417 FAX (509) 662-1229

Comments:

1650 Enterprise Parkway

Twinsburg, Ohio 44087 215-648-4000

ask. . .The Gas Professionals™

MATHESON

TRI•GAS

Certificate of Analysis - EPA Protocol Mixtures

Customer: OXARC INC Cylinder Number: SX-40586 Cylinder pressure: 1600 psig Last Analysis date: 4/9/2010 Expiration Date: 3/18/2013	Prot G1 DC	ocol: Refi 519 NOT USE TI PRESSURE	erence # 323 HIS CYLINDE FALLS BELO	Lot # 109-96-17643 R WHEN THE N 160 PSIG
Component : Oxygen Certified Conc: 5.98% ± 1% REL	Date:	REPLIC 3/18/2010 5.98% 5.98% 5.99%	ATE RESPON Date:	SES
Component: Carbon Dioxide Certified Conc: 6.04% ± 1% REL	Date:	3/18/2010 6.03% 6.07% 6.01%	Date:	······
Component: Carbon Monoxide Certified Conc: 1.29% ± 1% REL	Date:	4/2/2010 1.30% 1.30% 1.30%	Date:	4/9/2010 1.29% 1.28% 1.29%
ANCE GAS: Nitrogen			· · · · · · · · · · · · · · · · · · ·	
REFERENCE STANDARDS Component: Oxygen SRM #: NTRM-82658 Sample #: 01110212 Cylinder #: SX-20658 Concentration: 10.09%	Carbon Dioxide SRM-1674b 7-F-05 CAL-014611 6.876 %		Carbon Mon SRM-2639a 54-D-51 CAL-013889 0.991 %	oxide
CERTIFICATION INSTRUMENTS Component: - Oxygen- Make/Model: Rosemount 755 Serial Number: 2002832 Measurement Principle: Paramagnetic Last Calibration: 2/26/2010	Carbon-Dioxide Varian 3800 GC LR-92489 TC, FID 3/16/2010		Carbon Mono Varian 3800 C LR-92489 TC, FID 4/2/2010	xide

Notes: T134744 ...

Analyst

This certification was performed according to EPA Traceability Protocol for Assay & Certification of Gaseous Calibration Standards September 1997, using procedure G1 and/or G2.

Phili D. mat.

Date _____ 4/12/2010

509 Stoves Owner's Operation Manual Model 5091

UL 1482 STANDARD FOR SOLID-FUEL TYPE ROOM HEATERS- Edition 7 - Revision Date 2015/08/19 ULC S627 SPACE HEATERS FOR USE WITH SOLID FUELS- Edition 3 - Issue Date 2000/06/01 ASTM E1509 STANDARD SPECIFICATION FOR ROOM HEATERS, PELLET FUEL-BURNING TYPE - Issue Date 2012/10/01

MAE	DE	IN
	÷	
, , , , , , , , , , , , , , , , , , ,		
	-	<u> </u>
ш.	8.	Α.

MODEL 509-1
CAUTION!!! IMPORTANT OPERATING AND MAINTENANCE INSTRUCTIONS INCLUDED. DO NOT DISCARD.

LEAVE THIS MANUAL WITH THE HOMEOWNER.

Failure to follow the information in this manual may result in a fire; causing property damage, personal injury, or death. Read this booklet completely before installing or operating this appliance.

Do not modify this appliance in any way.

Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

Comply with all minimum clearances to combustibles as specified. Failure to comply may cause a house fire.

Glass and other surfaces are hot during operation and for some time after the fire has gone out. Supervise children around this appliance. Warn children and adults about high temperatures. High temperatures may ignite clothing or other flammable materials. Keep clothing, furniture, draperies and other combustible materials away.

DO NOT OPERATE WITH THE DOOR OPEN.

CALIFORNIA PROP 65 WARNING:

Use of this product may produce smoke which contains chemicals known to the State of California to cause cancer, birth defects, or other reproductive harm.

IMPORTANT WARNINGS

CAUTION: Read this manual thoroughly before starting installation. For your safety, follow the installation, operation and maintenance instructions exactly without deviation. Failure to follow these instructions may result in a possible fire hazard and will void the warranty. If this appliance is not properly installed, a house fire may result. Contact local building or fire officials about requirements and installation inspection in your area.

- 1. DO NOT CONNECT THIS UNIT TO A CHIMNEY FLUE CONNECTED TO ANOTHER APPLIANCE.
- 2. Do not connect this appliance to air ducts or any air distribution system.
- Do not install a flue damper in the exhaust venting system of this appliance.
- Do not use class B venting intended for gas appliances as a chimney or connector pipe on this appliance.
- 5. The minimum clearances must be maintained for all combustible surfaces and materials including; furniture, carpet, drapes, clothing, wood, papers, etc. Do not store firewood next to or touching the appliance.
- 6. INSTALLATION DISCLAIMER This stoves exhaust system works with negative combustion chamber pressure and a slightly positive chimney pressure. Therefore, it is imperative that the exhaust system is gas tight and installed correctly. Since 509 Fabrications, Inc. has no control over the installation of your stove, 509 Fabrications, Inc. grants no warranty, implied or stated for the installation or maintenance of your stove, and assumes no responsibility for any consequential damage(s).
- 7. Burning any kind of fuel consumes oxygen. If outside air is not ducted to the appliance, ensure that there is an adequate source of fresh air available to the room where the appliance is installed. WE HIGHLY RECOMMEND USING OUTSIDE AIR SOURCE IN CASE OF APPLIANCE SHUT DOWN, NO SMOKE WILL FILL THE ROOM.
- 8. The stove will not operate using natural draft, nor without a power source for the blower and fuel feeding systems.
- 9. Never use gasoline, gasoline-type lantern fuel, kerosene, charcoal lighter fluid, or similar liquids to start or "freshen up" a fire in this heater. Keep all such liquids well away from the heater while it is in use.
- 10. CONTINUOUS OPERATION: When operated correctly, this appliance cannot be overfired. Continuous operation at a maximum burn can, however, shorten the life of the electrical components (blowers, motors, and electronic controls), and is not recommended. Typical approved operation would include running at the low to mid-range setting with occasional running on the maximum setting during the coldest periods of the winter. The blower speed control should be turned to HIGH when operating the stove on the high heat setting.
- 11. CAUTION: HOT IN OPERATION. An appliance hot enough to warm your home can severely burn anyone touching it. Keep children, clothing and furniture away. Contact may cause skin burns. Do not let children touch the appliance. Train them to stay a safe distance from the unit.
- 12. APPROVED FUEL: This appliance is designed specifically for densified wood fuels only. This appliance is NOT approved to burn cardboard, nut hulls, cherry pits, corn, etc. regardless if it is in log form. Failure to comply with this restriction will void all warranties and the safety listing of the stove. Consult with your authorized 509 Fabrications, Inc. dealer for more information on approved densified log fuels.
- 13. FLY ASH BUILD-UP: For all densified fuel heaters, the combustion gases will contain small particles of fly ash. This will vary due to the ash content of the fuel being burned. Over time, the fly ash will collect in the exhaust venting system and restrict the flow of the flue gases. The exhaust venting system should be inspected regularly and cleaned as necessary.
- 14. SOOT FORMATION Incomplete combustion, such as occurs during startup, shutdown, or incorrect operation of the room heater will lead to some soot formation which will collect in the exhaust venting system. A precautionary inspection on a regular basis is advisable to determine the necessity of cleaning. The exhaust venting system should be inspected regularly and cleaned as necessary.
- 15. DISPOSING OF ASHES: Any ashes removed from the stove must be deposited in a metal container with a tight-fitting lid. The closed container of ashes should be placed on a noncombustible floor or on the ground, well away from all combustible materials, outside of the dwelling pending final disposal. If the ashes are disposed of by burial in soil or otherwise locally dispersed, they should be retained in the closed container until all cinders have been thoroughly cooled.
- SAVE THESE INSTRUCTIONS.
- 17. See the listing label on the appliance or see Safety / Listing Label

509 Fabrication

Thank you for purchasing our 509 Fabrications, Inc Densified Fuel Log Stove.

This manual is designed to be simple. After reading through it if you have any questions, please feel free to email me anytime at Dusty@509Fab.com. I will respond to you as soon as possible.

Very Important: In the unlikely event if your electricity goes out, do not open the door or the lid on the top of the stove. The stove is designed to be air tight. Let the fire go out naturally.

Do not have the lid and the door open at the same time while the fire is burning. You will get smoke in the room. Only open one at a time.

Do not burn wood or any other substance in this stove except natural densified fuel logs with no additives. Burning these types of fuel will void your warranty and heavily damage the inner workings of the stove and exhaust motor. This manual will cover:

1. Where and How to Install the stove including air intake and exhaust

2. How to Power the stove

3. Types of fuel you "Can and Cannot Burn"

4. How to Light the stove

5. How to Operate the stove and problem solving

6. How to Clean the stove

7. Maintenance

8. Clearance to combustibles

9. Limited Warranty

10. Important Warnings

How to Install the stove

The stove should be installed by a licensed stove company or a licensed HVAC Technician. Some states and counties require permits be obtained before you install your stove.

The outlet on the bottom combustion blower motor is 3" in diameter. Double wall pipe with stainless steel for the inner liner must be used in all installs. It is most commonly called Pellet Pipe. Your installer will know clearances for pipes through the walls and if you choose to run the pipe up instead of out the wall, you will more likely need to use 4" double wall pipe. The intake pipe fitting located on the bottom center of the stove is 3". A single wall pipe can be used for the intake air to the outside of the home.

Place the stove on an approved fire pad. Check with your installer in the state you are in to determine clearances on the size of pad. Some can be even with the base of the stove and others need to be one foot or more in size than the outer dimensions of the stove.

The stove is designed to be pushed back to within inches of the back wall and to be at least one foot from any sidewalls or any other surface. Check with your local permit inspector to verify your clearance from combustibles in your state. We have UL specifications on the stove for clearance to combustibles. (see #8)

HORIZONTAL INSTALL-EXHAUST Rear Wali or Alcove

VERTICAL INSTALL-EXHAUST Rear Wall or Alcove

Floor Protection

DuraVent - PelletVent Pro - Pipe

Building structure and Air intake and output, The following pages show requirments per UL testing of this stove 509 FAB suggest the DuraVent products and Specifactions (*See Attached Manual*) As an Industerial leader in Pellet Stove Pipe products

How to Power the stove

The stove has one plug-in, 3 prong 6 Ft. cord. Plug it into a 3-prong outlet. The stove should be plugged into its own outlet for safety and power surges.

The Fan and Igniter switches are on the left side of the stove on the base. The upper convection fan is plugged into to outlet under the stove.

The round knob is your first switch on the side of the stove and it is on the far left. This switch controls the upper air that will flow into the room. It has a variable speed and can be set to your needs.

The second switch is for your combustion blower. This switch will need to be turned to the up position and be on at all times that the stove is in operation.

The third switch is for your Hot Air Igniter. It is "ON" when the switch is located in the up position. The normal time for ignition is 1 to 3 minutes. It is very important to not leave this on after you are done lighting the stove. You could damage the igniter.

What you "Can and Cannot Burn" in your stove.

1. The stove is not designed to burn cord wood or wood round logs. DO NOT BURN WOOD!

2. The stove is not designed to burn any log that has additives in the log to help it burn. These types of logs will void your warranty if burned in your stove. The materials in these logs will also "clog up" the way the stove breathes to be able to operate efficiently and it will also plug up the fan blades on the motor that takes the exhaust out of the stove. Most of these logs that **are not** designed to be burned in your stove will have a wrapper on the log. Some examples of these types of logs are:

A. Duraflame

B. Java Log

C. Pine Mountain

D. Enviro Log

3. You can use the little fire starters that have wax additives in them to light your fire if needed. One per starting operation.

Log Fuel for the Stove .

Some logs over time will become "scaley" or rough feeling. This means that they have taken on moisture, just like a pellet will, over time, for a pellet stove. You cannot burn old pellets in a pellet stove but you can still burn your logs in your new stove, they just tend to create moisture inside the tube and water will be on the inside of the lid, so be careful opening the lid to keep the drops from spilling onto the top of the stove.

Be careful when selecting your new logs. They should be smooth and glossy felling to the touch, and have a slight dark color on the outside. Some older logs will start taking shape like a banana, they are not the ones to buy, they are too old to burn well. If you have logs left over from the previous season, it is best to mix them in with the new logs as you burn the stove, and use them to chop into kindling for starting the stove.

If a log sticks in the feed tube then you need to take the scraper tool provided and push it down the tube. Normally a couple of taps with the scraper tool will loosen the log and it will fall down to be burned in the fire.

How to Light the stove

DO NOT USE ANY TYPE OF FIRE STARTING LIQUIDS LIKE CHARCOAL LIGHTER FLUID, GAS, OR ANY OTHER COMBUSTIBLE FOR ANY REASON.

1. Open the door and make sure there is not a log left in the firebox. You can do this by looking at the bottom of the feed tube and down inside the square box. If you cannot clearly see in the fire box, slide the brick in the front over and look in with a flashlight. Slide the brick back into place when finished. If there is a log in there then follow this procedure

A. Move the log over to the right.

B. Drop in several little chunks of new log on the left-hand side, as many as can be fit in there without packing them in. Then proceed to # 8.

2. Close the door and latch it.

3. Open up the top lid on the stove

4. Slide the damper handle (located on the right side of the stove on the base) all the way to the front part of the base.

5. Break off some small ends of the logs using a hatchet or our log chipper found on our website. These pieces should be small chunks not full round discs from the logs. Drop about 3 cups of these pieces down the open lid.

6. Chop or break off 3 round discs about 1⁄2 inch thick from a log and drop those down the tube.

7. Grab a North Idaho Energy Log, a Presto Log, or a Home Fire Prest-Log or any natural style log and drop it down the tube. Try and hang onto it as you initially slide it down the tube

8. Close the top lid and latch it.

9. Open up the ball valve on the left side of the stove. In the closed position the handle will be alongside the stove. In the open position, it will be out 90 degrees from the stove.

10. Turn on the round knob to full speed

11. Turn on the Combustion blower motor, the second middle switch to the up position.

12. Turn the Igniter toggle switch, the 3rd switch to the far left on the base of the stove, to the up position.

13. When you see flames inside the stove, then slide the damper handle towards the back of the stove.

14. Turn off the igniter toggle switch, the 3rd switch to the far left on the base of the stove.

15. Turn the ball valve back to the closed position so it is in-line with the side of the stove.

16. Load the stove with extra logs.

17. Let the stove burn on high for at least 25 minutes before turning the damper down to low or medium burn. There is an indicator on the side of the base to determine your setting. On high you will go through a log every 2 hours or so. On low you will get from 4 to 6 hours out of a log. These figures are based on North Idaho Energy Logs. Other logs that are smaller will burn shorter periods. (Some logs will burn cooler as well in the amount of heat the stove produces, so find the logs that are right for you and your home and use them.) Different brands of logs are available in different parts of the country, just make sure they are a natural log with no additives.

OPERATION - START UP

How to Operate the stove and Problem Solving

The stove is very easy to operate as it does not have moving parts, and only the 2 fan motors. The biggest mistake to be made on this stove is to not let it burn for at least 25 minutes on high after lighting it. This is crucial to how the stove performs.

- 1. I can't get my fire to light with the igniter. Solutions: The igniter may be covered by a piece of fuel in the fire box. Slide the front brick over and look down in the fire box. Slide the log chunks over to the right of the left edge of the firebox. This will uncover the hole in the brick where the hot air is introduced to light the kindling in the firebox.
- 2. **My stove is not putting out any heat.** Inspect the fire through the door and make sure that the combustion blower is running and the upper convection blower is blowing air. If you can see a log in the firebox that is not glowing red or flaming, you may need to turn it up. Open up the damper by sliding the lever handle towards the rear of the stove. Let the stove burn for at least half an hour and then turn down to the setting you desire.
- 3. My stove is not putting out any heat. Inspect the fire through the door and make sure the combustion blower is running and the upper convection blower is blowing air. If you do not see glowing or burning in the firebox, then you may have a log stuck in the feed tube. Open up the top lid and look down the feed tube. If you can see a log in the feed tube, then follow this procedure: First, close the lid on top and then open the door. Feel for heat without touching anything on or inside the stove. If it is very hot when you open the door, then close the door and open the feed tube lid. Using a suitable tool, like a round rod, tap the log from the lid side down the feed tube. It will fall into the firebox. Open up the damper by sliding it towards the rear of the stove and let it burn on high for ½ hour and then reset to your desired setting.
- 4. My stove is not putting out any heat. Check the combustion blower and make sure it is on. It is powered "ON" by the middle toggle switch on the base of the stove. Make sure you have power to the plug where the stove is plugged in. You can do this by plugging another appliance into the wall and see if it comes on. If the appliance comes on you will need to call a repair company to replace the blower motor. (I have the blower motors available on my website and I will get you one out right away.)
- 5. **My stove is not blowing any heat from the convection blower out the front of the stove**. Make sure the blower is plugged in and the switch is turned on. Try unplugging the blower motor from the plug in on the backside of the stove under the base and plugging it into an extension cord. Then plug that cord directly into the wall. If the blower motor does not come on, then the switch or the blower motor is bad. Have a repair company come and fix it and order a blower off of our website.

How to Clean the stove

FOR YOUR SAFETY, IT IS IMPERATIVE TO MAKE SURE THE STOVE IS OFF AND COLD FOR ANY CLEANING PROCEDURE.

- 1. The glass is NORMALLY easy to clean. The best way to clean the glass is to take a razor blade with a built in safety handle and scrape the glass and then clean it with a product like "Simple Green" or glass cleaner and a paper towel.
- 2. The inside around the firebox needs to be vacuumed out about every 2 to 3 weeks or longer depending on how often you burn. Use an "ash vacuum" only to do this. It is what they are made for and then the dust will not blow in the house. The ash vacuums are available on my website.
- 3. Inspect the firebox by sliding the front brick to the side or removing the brick. Use a flash light to look in the firebox. If needed, vacuum the firebox out completely.
- 4. VERY IMPORTANT!! Every 3 to 4 days take the special wrench provided and using the pin end slide it into the hole on the rod sticking out by the tubes on the top front of the stove. Use wrench to pull the rod from front to back completely 5 or 6 times. This will clean off the radiant tubes so they transfer heat better.
- 5. **Every Time you clean the stove...** Use the special wrench provided to loosen the caps on each side of the stove. Unscrew them and use the ash vacuum to vacuum out those tubes. You can slide the end of the hose all the way in until it hits the other side of the stove. Look inside the tube with a light to make sure you have that area clean.
- 6. The body of the stove itself can be cleaned with glass cleaner, ONLY WHEN COLD.

Maintenance

1. Normal cleaning should be all that is necessary. Make sure to clean the radiant heat tubes with the scraper rod and wrench handle every day. This is a 30 second procedure.

One time a year the Lower Combustion motor should be removed and cleaned. The blades will have buildup on them from regular burning. This buildup needs to be removed and cleaned by a professional and the motor re-installed, making sure all nut fasteners and lock washers are used for re-install and tightened down securely. Do not over-tighten the nuts. If the gasket is damaged, it should be replaced to prevent air leaks. With the combustion motor removed, inspect your chimney pipe inspected for debris, and have it cleaned by a professional at this time if needed. When it is re-installed make sure that all connections are re-sealed and secure.

BLOWER

SCRAPER, WELDMENT

Brick replacement

The upper row of bricks are standard fire bricks except for the front facing brick. It has been cut down for air flow. The bricks can be obtained on the website or a home improvement store.

The inside row of bricks are identified and counted from the front facing brick that stands on its side. Front brick is #1 brick. #2 is to the left, brick #3 is in the back and brick #4 is the one on the right. These bricks are all special to their designated placement, and how they are cut and shaped. The bricks in the bottom of the firebox, if needing replaced, will all have to be replaced at the same time. They are available on the website.

Wiring Diagram

.---.

Warranty

These stoves are all built by hand and Made in America by 509 Fabrications, Inc. Post Falls, ID. They have been made with the finest parts and materials available and metal thicknesses that will last a lifetime.

1. The stove body itself, minus the finish paint, is warranted for life by the original purchaser.

2. The convection blower is warranted for 1 year from date of purchase.

3. The Combustion blower motor is warranted for 1 year from date of purchase.

4. The glass is warranted for 1 year from date of purchase.

5. The fire bricks do not have any warranty.

509 Fabrications, Inc. Post Falls, ID. www.509Fab.com <http://www.509Fab.com> Dusty@509Fab.com <mailto:Dusty@509Fab.com> https://www.facebook.com/509Fab/

Installation Instructions

Venting System for Pellet, Corn, Oil, and Biofuel appliances.

A MAJOR CAUSE OF VENT RELATED FIRES IS FAILURE TO MAINTAIN REQUIRED CLEARANCES (AIR SPACES) TO COMBUSTIBLE MATERIALS. IT IS OF THE UTMOST IMPORTANCE THAT DOUBLE WALL PELLETVENT PRO BE INSTALLED ONLY IN ACCORDANCE WITH THESE INSTRUCTIONS.

NOTE:

Read through all of these instructions before beginning your installation. Failure to install as described in this instruction will void the manufacturer's warranty, and may have an effect on your homeowner's insurance and UL listing status. Keep these instructions for future reference. This booklet also contains instructions for installing a venting system within an existing masonry chimney, and for installations passing through a cathedral ceiling.

Dear Customer, Installer, or End User:

We welcome any comments, ideas, input or complaints regarding matters pertaining to DuraVent products.

If you are searching for tech support or product information, please phone us at 800-835-4429. Or email us at: techsupport@duravent.com

VENTING SYSTEM FOR PELLET, CORN, OIL, AND BIOFUEL APPLIANCES.

For the most up-to-date installation instructions, see www.duravent.com CONTENTS

Clearances, Vent Listing, Installation Notes, Lubricants & Gaskets 4
Sealants, Fuel Selection, Best Practices 5
Tools Needed, Permits, General Installation Instructions
Installation into Masonry Fireplaces15
Installation Through Side of Masonry Chimney
Installation in a Cathedral Ceiling
Cleaning and Maintenance

CLEARANCES AND APPLICATIONS

Dura-Vent's PelletVent Pro is listed by Underwriters Laboratories as vent for listed appliances that burn oil, pellet, corn, and other biofuels. PelletVent Pro is also listed as a masonry reliner with the minimum clearance 0" from vent to masonry, and 0" clearance from the masonry to nearby combustibles. Never fill any required clearance space with insulation or any other materials (except insulation explicitly approved by DuraVent as noted below). Combustible materials include (but are not limited to) lumber, plywood, sheetrock, plaster and lath, furniture, curtains, electrical wiring, and building insulation <u>except that</u> <u>noted below</u>.

In the United States and Canada the minimum clearance to combustibles from PelletVent Pro is 1" for oil, pellet, corn or other biofuel applications.

NON-COMBUSTIBLE INSULATION

DuraVent approves the field application of <u>non-combustilble</u> insulation within the clearance to combustible distance (in wall thimbles or support boxes only) if/when desirable. Approved insulation must be listed / compliant with ASTM E136/ULC S114 as Non-Combustible, have a melting temperature above 2000°F/1100°C, be water resistant with low moisture absorbtion and be acceptable to the AHJ. Materials would include those made from stone (aka "rockwool" or "mineral wool" insulations). <u>NOTE- Fiberglass insulation is</u> NOT approved!

VENT LISTING

PelletVent Pro is listed by Underwriters Laboratories (files MH8381 & MH14420) to UL 641 Type L Low Temperature Venting Systems, UL1777 Relining, ULC S609 Low Temperature Vents, and ULC/ORD-C441 Standard for Pellet Vents .

INSTALLATION NOTES

Proper planning for your PelletVent Pro installation will result in greater safety, efficiency, and convenience, saving both time and money. Use only authorized Dura-Vent PelletVent, CornVent, PelletVent Pro and MGNA listed parts. Do not install damaged parts.

 WARNING: When passing through ceilings and walls, make sure all combustible materials and combustible building insulation products are a minimum of 1" from the vent pipe
 For horizontal terminations, make sure NFPA 211 rules are followed for minimum distance from windows and openings.
 Do not mix and match with other manufacturer's products or improvised solutions.

4. Practice good workmanship. Sloppy work could jeopardize your PelletVent Pro installation.

5. Never use a vent with an inside diameter that is smaller than the appliance flue outlet.
6. Multistory: Where PelletVent Pro passes through the ceiling, use Dura-Vent Firestop/ Support assembly.

7. PelletVent Pro placement: When deciding the location of your stove and vent, try to minimize the alteration and reframing of structural components of the building.

8. Sections of pipe are connected to each other by pushing them firmly together and twisting. Screws are not required. However, if screws are desired, use 1/4"-long sheet metal screws. Important! Do not penetrate the inner liner with screws.

9. Never install single-wall pipe to freestanding

4

pellet stoves. Single-wall pipe may be connected to a fireplace insert, provided it is inside the fireplace, and the fireplace has completely sealed surroundings.
10. Do not connect Type B Gas Vent pipe with aluminum liners to pellet appliances.

LUBRICANTS & GASKETS

PelletVent Pro utilizes an internal O-ring gasket on the outside of the inner liner in the female end of the Pipe Section. Depending on production date, these gaskets may be factory lubricated or field lubricated with soapy water / anti-seize. If your O-ring gasket is missing or it becomes damaged during connection, you must replace and lubricate the new O-ring gasket. Contact DuraVent technical service for further information.

SEALANTS

PelletVent Pro does not require additional sealant to be used at pipe joints, but in certain circumstances sealant may be used if desired. Seal the inner liner overlap at the male end of pipe for best results *(Figure 6)* Note: 500°F RTV silicone sealant is required

on the following component connections:

- Connecting PelletVent Pro biofuel (with gaskets) to PelletVent Pro (without gasket) or another PelletVent or CornVent.
- Connecting certain Appliance Adapters or other non-gasketed parts to the appliance outlet
- When using the Adjustable Length section.

FUEL SELECTION, BEST PRACTICES

PelletVent Pro is a multi-fuel venting system approved for burning wood

pellets, corn, and other approved biofuels, plus, oil and kerosene. Be sure to follow the recommendations of the appliance manufacturer for the burning of corn or other types of biofuel. A major reason for accelerated vent corrosion from burning corn is due to acidic condensate forming in the system. The moisture content of corn contributes significantly to condensate in the vent. The lower the moisture content of the corn, the less condensate you are likely to have in the vent. While corn with a moisture content of 15% may be allowed in the appliance, using a fuel with lower moisture content will help reduce condensate formation.

Vent Runs: Condensate is more likely to form in longer vents because the exhaust temperature cools further away from the appliance. If the exhaust cools to a certain point, moisture in the exhaust condenses in the vent, which can lead to accelerated vent corrosion. Keep the vent for cornburning appliances short wherever possible to maintain hot flue gas temperatures and keep moisture suspended in the exhaust. If a longer horizontal vent or taller vertical vent is needed, it is recommended that the vent run inside the building envelope or inside a chase enclosure to minimize the vent's exposure to cold temperatures. When terminating a corn burning system horizontally a stainless steel outer Pipe Section and the Round Horizontal Termination Cap are required. Be sure to follow all other applicable building codes and maintain all minimum clearances in enclosures.

Appliance Operation: Regardless of the fuel you choose always operate your appliance in accordance with the appliance manufacturer's recommendations. If you burn corn, operating the appliance at its lowest setting has a greater chance for condensate to form in the vent due

to the low exhaust temperature. In order to help reduce condensate from forming inside the vent system, operate the appliance at higher temperatures when colder weather is encountered. Higher operation settings provide for warmer flue temperatures, which help to keep moisture suspended in the flue gases. Inspection and Maintenance: When burning corn, be sure to inspect the appliance and vent often to determine if there has been any corrosion or damage to the system. Be sure to keep the venting system clean, including the tee cap (if applicable). The ash that results from burning corn can trap condensate in the tee cap and inside the vent, hastening corrosion to the system if left unchecked. Using pelletized fuel does not eliminate the need for inspection and cleaning. Lesser quality pellets create more soot accumulation and can clog venting sooner than the cleaner burning pellets. While it is not necessary to clean out liquid fuel burning systems with a brush, all other systems should be visually inspected monthly during the heating season, and cleaned at least once a year

TOOLS AND EQUIPMENT YOU MAY NEED

Eye Protection Gloves Screwdriver Hammer High-Temperature Waterproof (RTV) Sealant Tape Measure Saber or Keyhole Saw Level and Plumb bob

PERMITS

Contact your local building department or fire officials regarding any needed permits,

restrictions, and installation inspection requirements in your area.

GENERAL INSTALLATION INSTRUCTIONS

PelletVent Pro is listed with a minimum 1" clearance to combustibles

1. Follow the stove/appliance manufacturer's instructions.

A. Choose an appliance that is listed by a recognized testing laboratory.

B. Connect only one flue per appliance.

C. Only burn fuels approved for use by your appliance manufacturer.

D. Follow the appliance manufacturer's instructions and safety manual for maximum efficiency and safety. Over firing can damage the appliance and vent.

2. If the vent exit is on top of the stove *(Figure 1)*:

A. Place the appliance according to the manufacturer's instructions.

B. Drop a plumb bob to the center of the appliance flue outlet and mark center point on the ceiling *(Figure 2)*. At your marked center point, cut and frame a square hole in the ceiling for installation of the Ceiling Support or

PELLETVENT PRO COMPONENT	FRAMING DIMENSIONS
3" & 4" CEILING SUPPORT / FIRESTOP SPACER	7 ¼″ X 7 ¼″
3" & 4" CATHEDRAL CEILING Support Box	10 ¾" X 10 ¾"
3" & 4" WALL THIMBLE 3" & 4" CAS WALL THIMBLE	7 ¼" X 7 ¼"
3" & 4" WALL THIMBLE AIR Intake kit	11" X 11"

Table 1

FRAMING

FIRESTOP SUPPORT - OR FIRESTOP

SPACER

- 1 1/2" WOOD SCREWS

ł

8

---- 、

Firestop Spacer (*Figure 3*). Refer to *Table 1* for the dimensions of the hole.

C. Connect Pipe Adapter or Increaser Adapter to stove: Due to the variety of different stove collars, the Pipe Adapter will need hightemperature non-hardening sealant in order to achieve a leak-free connection. D. Connect Pipe Sections. Attach PelletVent Pro Pipe Sections by pushing male and female ends of pipe together and twisting until pipe is in locked position (Figure 4). PelletVent Pro pipe sections do not require any sealant; however in certain instances high temp silicone sealant may be used. Seal connection where the inner liners overlap for best results (Figure 5). Screws are not needed, but 1/4" screws can be used if desired, however, be sure you do not penetrate the inner liner. E. When the pipe passes through the Ceiling Support Firestop Spacer at ceiling, tighten bolt and clamp around pipe. Where the vent passes through additional floors and ceilings, always install a Ceiling Support Firestop Spacer.

F. ALWAYS MAINTAIN AT LEAST 1" CLEARANCE FROM COMBUSTIBLE MATERIALS TO THE VENT PIPE.

G. When the PelletVent Pro enters the attic, install an Attic Insulation Shield around the vent (*Figure 6*). This will prevent insulation and debris from collecting near the vent pipe. Use (4) nails or wood screws to secure the base of the Attic Insulation Shield to the framed opening. Adjust the height of the Attic Insulation Shield by sliding the top cylindrical shield over the one from the base. Ensure that the top of the Shield is above the level of building insulation. Secure the Shield in place with at least two (2) sheet metal screws through the side of the cylindrical shield. Attach collar around pipe, then lower to the top of the Attic Insulation shield.

H. After lining up for the hole in roof, using the same method as 2. (B), cut either a round or square hole in the roof (*Figure 7*). Always cut the hole with the proper clearance to the vent pipe. Install the upper edge and sides of Flashing under the roofing materials and nail to the roof along the upper edge and sides (*Figure 8*). Do not nail across the lower edge. Seal all nail heads with non-hardening waterproof sealant.

I. To finish, apply non-hardening waterproof sealant where the Storm Collar will meet the vent and Flashing; slide Storm Collar down until it rests upon the Roof Flashing *(Figure 9)*. Holding the base of Cap, firmly twist lock your Vertical Termination Cap onto supported Pipe

Section protruding through the roof line.

3. If the flue exits on back of stove and an interior installation is desired (*Figure 10*):
A. Place the appliance according to the manufacturer's instructions.

B. Connect the Tee Adapter or combine Tee with Cleanout and Pipe Adapter then seal and secure the Pipe Adapter to the back of the stove.

C. Continue to assemble Pipe Sections as described in **Step 2.**

4. If the flue exit is on the back of stove, and

an exterior vertical installation or partial vertical installation is desired (*Figure 11*):

A. Place the appliance according to manufacturer's instructions.

B. Cut and frame a square opening in the wall as specified in Table 1. PelletVent Pro can be installed with the standard Wall Thimble, Wall Thimble Air Intake Kit, or CAS Wall Thimble for through the wall installations. If the CAS Wall Thimble is used, refer to the PelletVent Pro CAS Installation Instructions for direction on how to install the Combustion Air System (CAS). The Wall Thimble Air Intake Kit allows combustion air to be drawn through the framed Thimble opening, eliminating the need to cut another opening in wall. The small flex provided with this kit allows connection to the Pellet Stove combustion air inlet. Note that when installing the Wall Thimble Air Intake Kit, the pipe will not be centered within the framed opening. Loosely assemble both

Figure 12

halves of the Wall Thimble onto Pipe Section. Connect the flexible hose with clamp to the exterior half of the Wall Thimble. Guide the flex through the opening in black interior half of Wall Thimble, gently pull the flex towards appliance (Figure 12), and if necessary trim excess flex to required length with snips. Secure flex to combustion air inlet of the stove with clamp provided. Only connect metal flex to the appliance; do not substitute or install plastic flex. The cover plate comes installed on the lower left corner of the thimble with intake guard pointing downward to deflect rain. If it is desired to rotate thimble and air inlet to another corner, remove the (2) screws on the inlet guard and re-attach over air inlet at new location. Secure black interior half of the Wall Thimble to the interior wall, and the unpainted exterior half are to be secured to the exterior wall on both styles of thimbles (Figure 13). The Wall Thimbles adjust to fit walls from 4"-8" thick. For installation in thicker walls an extension tube may be field fabricated. WARNING: Do NOT install any combustible insulation or other combustible material not approved by DuraVent within the Wall Thimble

Figure 14

itself. Doing so can create a fire hazard. The Wall Thimble ensures the clearance to combustible material is maintained to make a safe installation. Non-Combustible insulation (as defined earlier in this text) may be installed within the thimble and clearance to combustible distance if desired. Note:

Fiberglass insulation is NOT APPROVED.

C. Connect a Pipe Adapter and Pipe Section together then seal connection to rear exhaust outlet. Attach a Single Tee with Clean out adapter or a Double Tee with Clean-Out Adapter, and proceed attaching Pipe Sections up the wall. Installing a Double Tee with Cleanout Adapter on the exterior of wall, allows brushing of the Horizontal Vent run through to appliance (Figure 14).

D. Attach Wall Strap just above the tee. Wall Straps must be placed every 8-feet along an exterior vertical run (Figure 15). If your exterior vertical run terminates horizontally before penetrating the roofline, install at least one Wall Strap on the Pipe Section before 90 Degree Elbow and Horizontal Cap (Figure 16). Under no circumstances can a Vertical Cap be installed adjacent to vertical wall. PelletVent Pro offers fixed and Adjustable Wall Straps to maintain a 1"-3" clearance, as desired. If Assemble Pipe Sections in the same manner described in Step 2 of the general instructions. E. Seal the exterior section of the Wall Thimble to the wall with non-hardening waterproof sealant. As an option, you may also seal the gap between the pipe and Wall Thimble with sealant.

5. If the flue exit is on back of the stove, and a horizontal through-the-wall installation is desired (Figure 13):

A. Place the appliance according to manufacturer's instructions.

Figure 17

B. Connect the Appliance Adapter and sufficient Pipe Sections, seal and secure to back of stove. Horizontal Pipe sections must penetrate Wall Thimble and extend at least 6" beyond the exterior wall after Horizontal Cap is attached. If you are burning Corn you must use a Round Horizontal Cap. Pipe Sections exposed to exhaust gases between wall and Cap must have a Stainless Steel outer liner. The Round Horizontal Cap can be swiveled to be directed away from nearby objects (fence, plants, etc.), but must still be pointing in a generally downward direction. Important: Horizontal Caps must be pointed in a downward direction to insure rain and snow do not enter the cap, and cause potential damage to the appliance.

C. Follow the below listed NFPA 211 rule for distance of exit terminal from windows and openings:

NFPA 211 (2006 ed.) Section 10.4 Termination: 10.4.5

 (1) The exit terminal of a mechanical draft system other than a direct vent appliance (sealed combustion system appliance) shall be located in accordance with the following:

(a) Not less than 3 ft (.91m) above any forced air inlet located within 10 ft. (3m).

- (b) Not less than 4 ft. (1.2m) below, 4 ft.
 (1.2m) horizontally from or 1 ft. (305mm) above any door, window or gravity air inlet into any building
- (c) Not less than 2 ft. (0.61m) from an adjacent building and not less than 7 ft. (2.1m) above grade when located adjacent to public walkways.

If using the Wall Thimble Air Intake Kit, the installation may be considered a direct vent system, as defined by NFPA 211. Check with local building officials for clarification. If so, the clearances for the exit terminal are as follows: For an appliance with an input of 10,000 Btu/h (2930 W) or less, the vent terminal shall be located at least 6" from any opening into a building. For an appliance with an input of greater than 10,000 Btu/h but less than 50,000 Btu/h (14650 W), the vent terminal shall be located not less than 9" from any opening into a building. For an appliance with an input over 50,000 Btu/h (14650 W), the vent terminal shall be located not less than 12" away from any building opening. The bottom of the vent terminal and air intake must be located a minimum of 12" above grade.

6. If it is desired to attach to an existing 6"-

8" DuraTech, DuraPlus or DuraPlus HTC chimney, either roof supported or ceiling supported *(Figure 17)*:

A. Remove any existing connector pipe, adapter or connector going into the ceiling support box.

B. Visually inspect with a flashlight the condition of the interior of the chimney for cleanliness and structural integrity. All evidence of soot and creosote must be removed from the existing chimney system. If you doubt your ability to accomplish this, contact a certified chimney sweep. Do not use chemical cleaners, as these can possibly damage the inside of the chimney. Do any required maintenance on the existing chimney system at this time.

C. Install a DVL/DuraBlack Chimney Adapter in the existing Ceiling Support Box. Note that

the DVL/DuraBlack Chimney Adapter only connects to Dura-Vent chimney systems. **D.** Connect the appropriate size Chimney Adapter to the DVL/DuraBlack Chimney Adapter.

E. Connect the appliance to the Chimney Adapter using an Appliance Adapter, lengths of pipe as required, and an Adjustable Length pipe. Slide the Adjustable Length down over the top pipe section, position the installation vertically plumb, then slip the Adjustable Length up and twist lock it to the Chimney Adapter. Once all the components are firmly seated and properly aligned, carefully drill three 1/8" diameter holes through the outer sleeve only in the center of the slots located at the bottom of the Adjustable Length pipe. Do not penetrate the inner liner. Use (3) 1/4" length sheet metal screws to secure the

Adjustable Length pipe. INSTALLATION INTO A MASONRY FIREPLACE

1. Have the masonry chimney inspected by a certified chimney sweep or installer to determine its structural condition.

2. Carefully read the pellet stove or insert installation instructions.

3. Measure and record the dimensions as shown in *(Figure 18)*.

4. Use dimension "A" to determine total pipe requirements. Add 12 additional inches to ensure the termination is an adequate distance above the roofline.

5. The gross pipe required will be dimension "A" plus 12 inches. Five feet of this will be Flex Pipe. The remainder will be rigid pipe. For each joint, subtract 1-1/2 inches to allow for the overlap. You may need extra pipe, or an adjustable length pipe section to achieve the correct height.

6. Assemble the first rigid Pipe Section to the Flex Pipe, ensuring that the "UP" arrows shown on the pipe labels are, in fact, pointing up. Push the sections together and twist to lock. Screws are not required for a firm lock, however, should it be desired to use them, use stainless steel sheet metal screws 1/4-inch long - do not penetrate the inner liner of the pipe.

7. Repeat this process for the remainder of the pipe sections, and lower the assembly down the chimney as shown in *(Figure 19)*.

Figure 24

·--- 、

-

Lower it below its normal position in order to connect the Flex Pipe to the pipe on the appliance. It may be necessary to tie a line to the top section, to pull it back up later. 8. In making the connection at the appliance, configurations other than the one shown in (*Figure 20*) may be made. It may be necessary to contact the manufacturer of the unit to determine exactly what may or may not be done to make the correct connection. Some typical arrangements are shown in (*Figures 21 and 22*). An Appliance Adapter or Increaser Adapter may be needed, depending on the exit size of the stove or insert collar.

9. If a Tee or Tee Adapter is necessary to make the connection, as shown in *(Figure 22)*, the Tee has a removable Clean out Adapter on its base to enable cleaning. Ensure Tee is adequately supported.

10. Connect the appliance to the coupling on the bottom of the Flex Pipe, by twisting to the locked position. Push the appliance into the fireplace to its final resting place. Go to the top of the chimney and pull the vent system up to its desired height.

11. For support at the termination of the PelletVent, use a Tall Cone Flashing, and a Storm Collar. This will require 14 inches of pipe above the top of the masonry chimney. Pull the pipe up through the flashing to the desired height. Mark location of the Storm Collar. Slip the Storm Collar down over the pipe and affix it to the pipe with a 1/4"-long stainless steel sheet metal screw (Figures 23 & 24). The Storm Collar will then support the entire vent system. Install the Cap. Seal the joint at the Storm Collar, and any other joints or seams which may appear suspect. (Figure 25) shows a Tall Cone Flashing modified to fit a chimney where the tile liner protrudes above the masonry, as another alternate termination technique. This completes the masonry

installation.

INSTALLATION THROUGH SIDE OF MASONRY CHIMNEY

1. Set the appliance in its final location and mark the center of the hole where the pipe is to penetrate the masonry chimney. Ensure that you comply with the manufacturer's specifications in regards to clearance and distances from combustible surfaces.

2. The PelletVent Pro system is assembled essentially the same as previously described for installation in an existing masonry chimney with the exceptions listed:

A. No Flex Pipe is required, unless the masonry chimney has an offset. If an offset exists, then a Flex Pipe will be needed from the offset down to opening in masonry.

B. A Tee Section is installed at the bottom end of the vertical pipe (*Figure 26*).

C. A Reduction Collar or a Trim Collar is required to go around the pipe section that

passes through the masonry to give it a finished look.

3. It will be necessary to break out the masonry around the location of the pipe center line mark to a diameter of at least 4 inches for 3 inch pipe, and at least 5 inches in diameter for 4 inch pipe.

4. Install the Tee on the bottom of the vertical pipe system and lower it down the chimney until the center of the branch of the Tee is level with the center of the hole in the masonry. Connect horizontal pipe section to the Tee branch.

5. Holding the pipe at the proper elevation, install the Storm Collar and Cap, as described in **Step 11** for the fireplace installation.

6. Connect the horizontal Pipe Section through the masonry to the Tee by pushing it through the hole in the masonry, and lining it up with the branch of the Tee. Then insert Pipe Section into the Tee, while twisting to lock it.

7. Once the horizontal Pipe Section is in place, the space between the pipe and the masonry may be filled with high temperature grout, if desired *(Figure 27)*.

8. Install the Reduction Collar or Trim Collar over rough opening, then 90° Elbow, and the required vertical Pipe Sections down to the appliance. An Adjustable Pipe length may be needed, as well as an Appliance Adapter or Increaser Adapter. **9.** Conduct a final inspection of the entire job, and review the manufacturer's operating and installation instructions once more, before firing the appliance.

INSTALLATION IN A CATHEDRAL CEILING

1. Mark a line on the side of the Cathedral Ceiling Support Box to correspond to the line of the roof pitch, as shown in *(Figure 28)*. Allow for the Support Box to protrude below the low side of the finished ceiling a minimum of 2 inches.

2. Position the appliance at its proper location on the floor. Pay close attention to the manufacturer's installation instructions regarding the clearance to combustibles, etc. Position appliance so Support Box will not interfere with roof rafters or other structural framing.

3. Run a plumb line from the center of the flue exit on the stove to the ceiling. Mark the point on the ceiling where the plumb line intersects. This represents the center of the support box. Drill a small hole through the ceiling at this point, so it can be located from the top of the roof.

4. From the roof, locate and mark the outline of the Support Box.

5. Remove shingles or other roof covering as necessary to cut the rectangular hole for the Support Box. Cut the hole 1/8-inch larger than the dimensions of the Support Box (*Figure 29*). The rectangular hole should be centered on the small hole which you drilled through the ceiling to mark the location. Again, verify that you are not cutting through rafters or framing members.

6. Run the Support Box through the roof as shown in *(Figure 30)*, and place it so that the bottom of the Support Box protrudes at least 2 inches below the low side of your opening in the finished ceiling

.

19

Figure 32

(Figure 31). Align the Support Box vertically and horizontally with a level. Temporarily tack the Support Box in place through the inside walls and into the roof sheathing.

7. If the Support Box protrudes the roofline use tin snips to cut from the top corners down to the roof line, and fold the resulting flap over the roof sheathing (*Figure 32*). Before nailing it to the roof, run a bead of non-hardening sealant around the outside top edges of the Support Box so as to make a seal between the box and the roof. Clean out any combustible material or debris from inside the Support Box.

8. Place the Support Clamp, included with Support Box, loosely around Pipe Sections running through hole in Support Box *(Figure 33)*.

9. Connect the necessary amount of Pipe Sections to reach the stove and extend at least 12-inches above the roof before attaching Termination Cap (*Figure 32*).

10. After all PelletVent Pro Pipe Sections and components are assembled and connected down to the appliance seal and secure the Appliance Adapter to stove. Using a level, make slight adjustments in the position of the appliance until the pipe is truly vertical. Tighten the bolts in the Support Clamp (Figure 33). Note that the overall length of the PelletVent Pro system can be no longer than 42 feet. **11.** Slip Roof Flashing over the supported Pipe Section(s) protruding through the roof. Apply sealant to underside of Roof Flashing along upper edge and sides. Secure the base of Roof Flashing to the roof with roofing nails (Figure 34). Ensure that the roofing material overlaps the top edge of the Roof Flashing.

CLEANING AND MAINTENANCE

1. Have your system cleaned by a certified chimney sweep if you have doubts about your ability to clean it. Use a plastic or flexible steel

brush. Do not use a stiff brush that will scratch the stainless steel liner of your system.

2. PelletVent Pro systems must be installed so that access is provided for inspection and cleaning.

 The system should be inspected at least once every month during the heating season.
 Do not use chemical cleaners. They can damage the vent pipe.

5. To increase the life PelletVent Pro, coat all exterior metal parts with high temperature, rustproof paint. This is highly recommended, particularly in areas near the ocean.

6. In case of a chimney fire, close all appliance draft openings shut off appliance and call your Fire Department. Do not use the appliance or vent until it has been inspected for possible damage and silicone gaskets replaced.

7. Dura-Vent is not responsible for flue byproducts that might discolor roofs or walls.

M&G DURAVENT WARRANTY

M&G DuraVent, Inc. ("DuraVent") provides this limited lifetime warranty for all of its products to the original purchaser, with the exception of Ventinox (lifetime), DuraBlack (five years) and all Termination Caps (five years). Subject to the limitations set forth below, DuraVent warrants that its products will be free from substantial defects in material or manufacturing, if properly installed, maintained and used. This Warranty is non-transferable with the exception of Ventinox which is transferable from the original homeowner to the buyer of the home for a period of ten (10) years. This warranty does not cover normal wear and tear, smoke damage or damage caused by chimney fires, acts of God, or any product that was: (1) purchased other than from an authorized DuraVent dealer, retailer or distributor; (2) modified or altered; (3) improperly serviced, inspected or cleaned; or (4) subject to negligence or any use not in accordance with the printed materials provided with the product as determined by DuraVent. This limited lifetime warranty applies only to parts manufactured by DuraVent.

DuraVent provides the following warranties for its products: One Hundred Percent (100%) of the purchase price or MSRP at time of purchase, whichever is lower, for 15 years from the date of purchase, and Fifty Percent (50%) thereafter, except for the following limitations: Ventinox liner and components in wood, oil, wood pellet, and gas installations are warranted at One Hundred Percent (100%) for the lifetime of the original homeowner; Ventinox 316 liner and components for coal burning installations which are warranted One Hundred Percent (100%) for ten years; all Termination Caps and DuraBlack® are warranted at One Hundred Percent (100%) for ten years; all Termination Caps and DuraBlack® are warranted at One Hundred Percent (100%) for ten years; all Termination Caps and DuraBlack® are warranted at One Hundred Percent (100%) for ten years; all Termination Caps and DuraBlack® are warranted at One Hundred Percent (100%) for ten years; all Termination Caps and DuraBlack® are warranted at One Hundred Percent (100%) for ten years; all Termination Caps and DuraBlack® are warranted at One Hundred Percent (100%) for ten years; all Termination Caps and DuraBlack® are warranted at One Hundred Percent (100%) for ten years; all Termination Caps and DuraBlack® are warranted at One Hundred Percent (100%) for five years.

All warranty obligations of DuraVent shall be limited to repair or replacement of the defective product pursuant to the terms and conditions applicable to each product line. These remedies shall constitute DuraVent's sole obligation and sole remedy under this limited warranty. This warranty provides no cash surrender value. The terms and conditions of this limited lifetime warranty may not be modified, altered or waived by any action, inaction or representation, whether oral or in writing, except upon the express, written authority of an executive officer of DuraVent.

VENTINOX WARRANTY CONDITIONS

Liner and Component warranties contained herein are subject to the following conditions: (1) The Liner and Components must be installed according to DV's installation instructions; (2) The Liner and Components are used only to line or reline chimneys venting residential appliances for which the liner was intended; and (3) documented annual inspection of the Liner and Components and maintenance as deemed necessary, beginning one year after the date of installation and continuing throughout the warranty period, by a Nationally Certified Chimney Sweep or VENTINOX® installer. The Liner and Components warranty is further subject to compliance with the following requirements throughout the warranty period: The chimney must have a chimney cap and chemical chimney deaners must not be used when cleaning the Liner or Components. Plastic-bristle flue cleaning brushes are recommended. Com, biofuels, driftwood or other wood containing salt, preservative-treated lumber, plastic and household trash or garbage, or wood pellets containing such materials must not be burned in the appliance or fireplace. In case of a chimney fire, the chimney must be inspected and approved by a certified Chimney Sweep before reuse. After each annual inspection, maintenance, and cleaning, the certified Chimney Sweep must fill out and date the appropriate section of the warranty card provided with the chimney liner.

LIMITATIONS ON INTERNET SALES:

Notwithstanding any other terms or conditions of this limited lifetime warranty, DuraVent provides no warranty for the following specific products if such products are both: (a) purchased from an Internet seller; and (b) not installed by a qualified professional installer: DuraTech^o, DuraPlus HTC^o, PelletVent Pro^o, FasnSeal^o, and DuraVent's relining products including DuraLiner^o, DuraFlex^o 304, DuraFlex^o 316, DuraFlex^o Pro, DuraFlex^o SW, and Ventinox^o. For purposes of this warranty, a trained professional installer is defined as one of the following: licensed contractors with prior chimney installation experience, CSIA Certified Chimney Sweeps, NFI Certified Specialists, or WETT Certified Professionals.

DuraVent reserves the right to inspect defective product to determine if it qualifies for replacement under the terms of this limited lifetime warranty. All warranty claims must be submitted with proof of purchase. Labor and installation costs are not covered under this warranty. To obtain warranty service contact DuraVent promptly at DuraVent Warranty Service, 902 Aldridge Rd., Vacaville CA 95688, or call 800–835–4429.

WHERE-LAWFUL, DuraVent DISCLAIMS ALL OTHER WARRANTIES, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL DURAVENT BE LIABLE FOR INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR SPECIAL DAMAGES OR DIRECT OR INDIRECT LOSS OF ANY KIND, INCLUDING BUT NOT LIMITED TO PROPERTY DAMAGE AND PERSONAL INJURY. DURAVENT'S ENTIRE LIABILITY IS LIMITED TO THE PURCHASE PRICE OF THIS PRODUCT. SOME STATES DO NOT ALLOW LIMITATIONS ON IMPLIED WARRANTIES, OR THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT APPLY TO YOU. THIS LIMITED WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY ALSO HAVE OTHER RIGHTS THAT VARY FROM STATE TO STATE.

For the most up-to-date installation instructions, see www. duravent.com REV 7.20.2010

M&G DuraVent, Inc. PO Box 1510 Vacaville CA 95696-1510 Manufactured in Vacaville CA and Albany NY

Customer Service Support 800-835-4429 707-446-4740 FAX www.duravent.com

PelletVent Pro is a registered trademark of the M&G DuraVent, Inc. All rights reserved. Made in the USA. M&G DuraVent is a member of M&G Group. ©2011

820003167-L550 5/2016

WOODSTOVE DATA SHEET # 30 STOVE STORAGE

The OPTIMUM DENSIFIED FUEL LOG STOVE tested by Myren Consulting, Inc. is being held in custody by:

509 FABRICATORS, INC.				•	Phone 509 993 3767
14823	n.	Peone	Pines	Drive	
Mead,	WA	99201			Contact: Dusty Henderson

The unit was tested at Myren Consulting's lab in Colville, WA. It was sealed on 1/10/17 after the unit had cooled after testing. The following page contains photos taken after the unit was sealed on 1/10/17.

The unit was sealed with several lengths of metal banding/strapping that were placed around the stove in a manner that prevents the door from being opened. A label that clearly identifies the unit as a sealed EPA test stove and/ or a Myren Consulting, Inc. address label is placed over the strapping and taped into place with 2" clear packing tape. The stove was also loaded onto a pallet and strapped to a pallet for transport back to 509 Fab and to its final storage location. A sample stove storage label follows this page.

Once the unit is/ was certified by EPA, the unit will be returned to 509 Fab via the manufacturer's truck.

Carrier:

Shipped on: _____

WARNING

SEALED EPA TEST STOVE

DO NOT OPEN OR TAMPER WITH THE SEALS AND PACKAGING ON THIS STOVE.

TO DO SO WILL VOID THE CERTIFICATION ON THIS STOVE.

509 Optimum

WST5-Form11

WARNING

SEALED EPA TEST STOVE

DO NOT OPEN OR TAMPER WITH THE SEALS AND PACKAGING ON THIS STOVE.

TO DO SO WILL VOID THE CERTIFICATION ON THIS STOVE.

Optimum

 $\sum_{i=1}^{n}$

Appendix E

Myren Consulting Test Report Addendum Dated September 21, 2017

US EPA WOOD HEATER CERTIFICATION TEST REPORT ADDENDUM

509 FABRICATORS, INC. OPTIMUM DENSIFIED FUEL LOG STOVE

SEPTEMBER 21, 2017

MYREN CONSULTING, INC.

OFFICE

512 WILLIAMS LAKE ROAD COLVILLE, WA 99114 PHONE 509-684-1154 LABORATORY

501 C WILLIAMS LAKE ROAD COLVILLE, WA 99114 PHONE 509-685-9458

EMAIL myren.ben@gmail.com

Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

Office: (509) 684-1154 Lab: (509) 685-9458

email:myren.ben@gmail.com

509 FAB Optimum 2nd Sanchez Letter

21 September 2017

Dr. Rafael Sanchez, PhD. U.S.EPA Office of Enforcement and Compliance Assurance Office of Compliance William Jefferson Clinton Building, South Room 7419D 1200 Pennsylvania Ave., N.W. Washington, DC 20003

Dear Dr. Sanchez:

Myren Consulting, Inc. has prepared a certification test report for the first certification test run on the Optimum densified fuel log stove and sent it to the manufacturer's certifying third party entity, Omni Test lab. Based upon a review of the information and data in that initial test report, EPA required a second certification test run before it would certify the unit. This Addendum contains the information and data for that second run. As the test results indicate, the unit's emissions are below both the 2015 EPA standard of 4.5 g/h and 2020 EPA standard of 2.0 g/h.

This Addendum does not contain some of the information found in the original test report, i.e., Drawings and Owners Manual, because it would be redundant to do so.

A comment is warranted here. This unit is the first unit that burns densified fuel logs to be certification tested. How it operates is very differently from both wood stoves and pellet stoves. It is truly an "outside the box hybrid" that combines operational features from both wood and pellet stoves, so the way it operates and was tested reflects this. Thus, there was a long period of negotiations between 509 Fabricators, Myren Consulting and EPA personnel to reach a viable test protocol. Because we had to conduct two certification tests that each generated an integrated average, I averaged the integrated averages to come up with a g/h emission rate, %OE HHV, CO g/h, etc. That information and the averages are all in the Data Summary section.

If you or anyone else has any questions about the information or data in either of the test reports for the 509 OPTIMUM, please contact me immediately. And Thank You for your patience and help in getting this unit tested.

Sincerely Ben Myn

Alben T. Myren Jr. President ATM/im

US EPA WOOD HEATER CERTIFICATION TEST REPORT ADDENDUM

509 FABRICATORS, INC. OPTIMUM DENSIFIED FUEL LOG STOVE

SEPTEMBER 21, 2017

MYREN CONSULTING, INC.

OFFICE

512 WILLIAMS LAKE ROAD COLVILLE, WA 99114 PHONE 509-684-1154

LABORATORY

501 C WILLIAMS LAKE ROAD COLVILLE, WA 99114 PHONE 509-685-9458

EMAIL myren.ben@gmail.com

WST5 Form 5148702 Rev 12/09

.

£ :

Confidential ******

The data and information in this test report is confidential, proprietary information and is not to be released to and/or discussed with any party who is not authorized by the manufacturer or the testing laboratory to receive such data.

Confidential *****

Report Certification

The sampling and analysis for the appliance described in this report was carried out under my direction and supervision.

Date: 9/18/17

Signature: <u>Alben</u> Myren Te. Title: President

I have reviewed all of the test data and test results found in this report and hereby certify that the test report is authentic and accurate.

Date: 9/18/17

Signature:	Alber J. Myren to
Title:	President

PELLET STOVE

TABLE OF CONTENTS

Introduction	Section(s)	Page(s)
Title Page	Introduction	i
Confidentiality Statement		- ii
Report Certification		iii
Table of Contents		iv
Testing Location and Personnel Information		v
Test Report (Data) Page Number Index		vi-v ii
Individual Test Run Page Number Index		viii
Test Series Information and Discussion		ix
Summary and Discussion of Results		
Integrated Test Results	Data Summarv	1
Particulate Sampling Train Performance	 _	1
Test Data Summary		2-4
Pellet Stove Aging Data	Aging	2
Individual Test Run (Raw Data)		
See Pellet Stove Test Run Page Index in the Introduction Section for a complete, sequential list of the data pages in the integrated test run.	Test Run	vari
Calibration Data		
See Test Report (Data) Page Number Index, Item 14, for a complete, sequential listing of the data in this section.	Cal Data	vari
Stove QC		
Pellet Stove Description	Stove QC	1
Blueprints		
Promotional (Sales) Brochure	Blueprints	vari
Laboratory verified blueprints		vari
Manual		
Manufacturer's Written Test Instructions	Manual	vari
Manufacturer's Owner's Manual		vari
Storage		
Storage Location/ Sealing Information	Storage	1
Photo of Sealed Stove	-	1

iv

plof1

Rev 0 12.15

TESTING LOCATION AND PERSONNELL INFORMATION

Unit Name: OPTIMUM DENSIFIED FUEL LOG STOVE

Manufacturer Name: 509 FABRICATORS, INC.

Manufacturer Address: 14823N. Peone Pines Drive Mead, WA 99201

Manufacturer Phone: 509 993 3767

Manufacturer Contact Person: Dusty Henderson email: Dusty@509fab.com

Observers & Affiliation: Dusty Henderson & Gary Henderson, both from 509 Fabricators

SUPERVISOR: Ben Myren

MYREN CONSULTING'S LAB TEAM: Ilse Myren, Ben Myren, Eric Schaefer

LAB LOCATION: Myren Consulting's lab in Colville, WA 99114

ELEVATION: ~ 1650 FEET

MYREN CONSULTING, INC.

LABORATORY	OFFICE				
501-C WILLIAMS LAKE ROAD	512 WILLIAMS LAKE ROAD				
COLVILLE, WA 99114	COLVILLE, WA 99114				
509 685 9458	509 684 1154				
	email: <myren.ben@gmail.com></myren.ben@gmail.com>				

WST6-Form5 Page 1 of 3 Rev: 12/15

 $\langle \widehat{} \rangle$

Pellet Stove Test Report Page Number Index

(

sults p. 1 eets p. 2-4 vription p.1 (vari)	vari n x	p. 1-2	#9,13 #8 16	μ 0 , 10	#11	#9,13							-						(44	(.44					
<u>Location</u> Integrated Test Re. Data Summary Sh Wood Heater Desc	P. 1 of Section Introduction	Data Chanta	Data Sheets		Data Sheets	Data Sheets		P 1	Data Chart 416		P 3 (Variahla)	Data Sheet #4.4		P. 5	2	рę	Data Sheet #16		P. 7 (Variable # of 1	(Nariahle # of nn)	(variable # of pp.)	(rdd IN # AIRBITINA)	P. 11	P 11	P. 11
<u>Section</u> Data Summary Data Summary Stove QC	Operators Manual Installation Description	Aging Individual Test Runs	Individual Test Runs		Individual Test Runs	Individual Test Run		Cal Data	Individual Test Run		Cal Data	Individual Test Run		Cal Data		Cal Data	Individual Test Run		Cal Data	Cal Data	Cal Data		Cal Data	Cal Data	Cal Data
 Integrated Test Results Summary Table of Other Data Wood Heater Description 	 Manuracturer's lesting instructions Test Camber Installation Description 	 Pellet Stove Aging Documentation Pretest Burn Procedures 	 Pretest Facility Measurements). Test Fuel Measurements	A. Fuel Moisture	0. Heater Operation and Air Supply Settings 1. Calibrations	A Platform Scale	1. Semi Annual	2. Pre and Post Test	B.Analytical Balance	3. Semi Annual	4. Pre Weighing Check	C. Temperature	5. Thermometers	6. Thermocouple Readout(s)	a. Semi Annual	b. Daily Check	D. Dry Gas Meters	a. Semi Annual Calibration	b. Post Test Audits	c. Transfer Meter Calibration	E. Miscellaneous Test Equipment	a. Anemometer	b. Barometer	c. Draft/ Static Pressure Gauge

:2

WST6-Form5 Page 2 of 2 Rev: 12/15		#15-3	#15-1	Sheet #2 #16	<pre># 8; Computer Printout #1-16</pre>	#4-1, 4-2 #4-3, 5	#5 #5 #5	# 4-1, 4-2 #4-3 #4-4 (Variable pp.)	
•	P. 13 P. 20	P. 22 Data Sheet	P. 24 Data Sheet	P.1 of Data Data Sheet Table 1	Data Sheet # Data Sheets	Data Sheets Data Sheets	Data Sheet Data Sheet Data Sheet	Data Sheets Data Sheet Data Sheet	
	Cal Data Cal Data	Cal Data Individual Test Run	Cal Data Individual Test Run	Individual Test Runs Individual Test Runs Individual Test Runs	Individual Test Runs Individual Test Runs	Individual Test Runs Individual Test Runs	Individual Test Runs Individual Test Runs Individual Test Runs	Individual Test Runs Individual Test Runs Individual Test Runs	
	 d. Humidity Gauge Calibration (Sling Psychrometer) F. Combustion Gas (CO₂, O₂, CO) Train Response Check G. CO₂ Analyzer 	 Calibration Pre and Post Test Zero/Span CO Analyzer 	 Calibration Pre and Post Test Zero/Span C. Calibration Gas Certificates of Analysis Quality Checks 	 A. Leak Unecks 1. Particulate Sampling Train 2. Combustion Gas (CO₂, O₂, CO) (CEM) Train B. Proportional Checks 6. Sample Calculations 	 A. Dry Burn Rate 7. Raw Test Data 8. Analytical Data 	A. Filter and Beaker TaresB. Solvent BlanksC. Particulate Catches	 Gross Blanks Net Constant Weighings 	 Tares Finals Analytical Balance QC Checks 	

(

viii

Forms Introduction P. ix **Page 1 of 1**

ASTM E2515/ EPA M5G-1 Individual Test Run Page Index (Pellet Stove)

44 47 20-7 The data sheets in the individual test runs are

Dare Description	quence.
Filters photo	# of Pages
CSA B415.1~10 "Report" computer spreadsheet wrintont	
CSA B415.1-10 "Data Input" computer spreadsheet printout	Variable
Dilution Tunnel Traverse data	Variable
Dilution Tunnel Gas Velocity and Volumetric Flow Rate Calmilations	ч
Train 1 Emission Rate/ Dilution Tunnel Calculations commuter succeedances	-1
Train 1 0-60 Minute Emission Rate/ Dilution Tunnel Calculations commuted and and a commuted and a commuted and a commuted and a commuted a commut	Variable
Train 1 0-60 Minute Particulate Sampling data (Meter Box data)	Variable
Train 1 60 Minute Plus Particulate Sampling data (Meter Rox data)	Variable
Filter Constant Tare Weight data	Variable
Beaker Constant Tare Weight data	Variable
Acetone Blank Beaker Constant Final Weight data	Variable
Train 1 0-60 Minute PM Sample Constant Final Weight data	 1
Train 1 60 Minute Plus Constant Final Weight data	-1
Traín 1 Particulate Matter Catch Calculations	÷
Train 2 Emission Rate/ Dilution Tunnel Calculations commiter succession faired and a succession reader and a succession reader and a succession reader and a succession reader a succession r	Variable
Train 2 Particulate Sampling data (Meter Box data)	Variable
Train 2 PM Sample Constant Final Weight data	Variable
Train 2 Particulate Matter Catch Calculations	. 1
Train 3 Room Blank Sampling Rate and PM Concentration Calmilations commited for the second second second second	Ŧ
Train 3 Particulate Sampling data (Meter Box data)	Variable
Train 3 PM Sample Constant Final Weight data	Variable
Train 3 Particulate Matter Catch Calculations	ъ
Analytical Balance QA/ QC data	r-1
Woodstove Data Sheet #8 Miscellaneous data	Variable
Woodstove Data Sheet #9 Pellet Stove Operating data	, 1
Woodstove Data Sheet #10 Preburn and Fuel Load Moisture Determination data	
Woodstove Data Sheet #11 ASTM E2780 Fuel Load Calculations	н,
Woodstove Data Sheet #13 Pre Burn Data	
Woodstove Data Sheet #14 Burn Rate, Flue Gas and Temperature Data	Variable
Woodstove Data Sheet #15-1 CO ₂ Pre and Post Test Zero/Span Audits Woodstone Date Start #11 6 20 2	variable 1
Woodstove Data Sheet #15-3 CO Fre and Post Test Zero/Span Audits Woodstove Data Sheet #16 Cooline Cooline	╡╺┥
THE THE PARTY AND A PARTY AND	⊮ -4

Rev 12/15

TEST SERIES INFORMATION AND DISCUSSION

MODEL LINE: OPTIMUM DENSIFIED FUEL LOG STOVE MODEL 1

TEST UNIT: OPTIMUM DENSIFIED FUEL LOG STOVE MODEL 1

Manufacturer: 509 FABRICATORS INC.

Date Received: 12/28/16

Date(s) Aged: 12/27/2016 - 1/1/2017. See AGING Section in first test report

Test Date(s): 1/9/2017, 9/5/2017

PM Sampling Method(s): Test Run #1: ASTM E2515 using 4" fiber glass filters (EPA M5G-1) Test Run #2: ASTM E2515 using 4" Pall TX-40 TFE coated filters (EPA M5G-1)

Operating and Fueling Protocol: EPA M28R, ASTM E2779 Revised. See letters to EPA (Rafael Sanchez, OEC, D.C., Stef Johnson, OAQPS, RTP and Mike Toney, OAQPS, RTP) and their written and email responses.

Number of Test Runs: 2

The OPTIMUM Densified Fuel Log stove manufactured by 509 FABRICATORS, INC. located in Mead, WA was tested by Myren Consulting, Inc. using the Environmental Protection Agency's (EPA) Test Method 28R, "Certification and Auditing of Wood Heaters", ASTM E2515-11, "Standard Test Method for Determination of Particulate Emissions Collected in a Dilution Tunnel" and ASTM E2779-10, Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters". (See the Federal Register/ Vol.80, No.50/ Monday, March 16, 2015. [pp.13672-13753]). On March 28, 2015 Myren Consulting, Inc. requested approval from EPA to use four-inch filters when conducting all PM emission certification tests and received the approval to do so on April 7, 2015. Thus the PM sampling and PM sample processing procedures used during the certification tests found in this test report are what are found in EPA M5G-1 in the previous NSPS. (See the Federal Register/ Vol.53, No.38/ Friday, February 26, 1988/ pp.5860-54926, especially in Method 5G in Appendix A on pp. 5884-5892.) The particulate matter (PM) emission data was calculated as specified in the Wood Heater New Source Performance Standard (NSPS) dated March 16, 2015. The

percent overall efficiency (%OE) for the overall test run and for each test segment (High, Medium and Low) was calculated using the %OE algorithm found in CSA's B415.1-10.

All events and information pertinent to the test data are recorded on the data sheets for each test run, particularly on pp. 13 and 14.

Any deviations made or noted from the promulgated methods other than those that were accepted and certified by EPA during the laboratory accreditation process are listed and discussed below. The OPTIMUM densified fuel log stove was tested at Myren Consulting's lab in Colville, WA using Myren Consulting Inc.'s lab accreditation. A copy of the letter from EPA (Johnson) granting Myren Consulting, Inc. accreditation under the 2015 NSPS and a copy of Myren Consulting's new Laboratory Accreditation Certificate (#2) are included in the following pages.

A brief note about how the four-inch (EPA M5G-1) particulate samples were processed is necessary to help the reviewer understand the net catch values. First, filters are weighed in pairs to reduce weighing errors. Second, experience has shown that the small portions of the filters that are left on the frits (filter supports) in the M5G-1 filter housing apparatus after the filters are removed are full of static electricity. When these small portions are removed to a plastic petri dish, they quickly adhere to the petri dish. Because trying to recapture these small pieces of filter material during weighing causes them to disintegrate into smaller and smaller pieces, which makes obtaining accurate catch weights difficult, it was decided to place this filter material in with the particulate captured with the acetone wash, where it shows up as catch. Some of the filter material was already following this Thus, there may be negative filter catch weights that pathway. are used during the particulate emission rate calculation process. However, the filter material lost off the filters is accounted for in the acetone wash catch.

ASTM E2779-10 Equation 1 calls for a dry moisture content for the test fuel used during testing. There is no way to measure the moisture content of pellets or densified fuel logs on a dry basis. Instead one can determine the wet basis moisture content by drying a sample. This is what done and the data for this is on Data Sheet 11 in the test run. Once the wet basis moisture content is known, it is then possible to calculate the fuel burnt on a dry basis, which again is what was

xi

done. The dry burn rate (DBR) determination is the same. The revised procedures and equations used to determine the actual DBR are to be found on the page after Data Sheet 11 in the Section titled TEST RUN.

The following pages contain: (1.) A discussion of test results. (2.) A diagram showing the height of the appliance and chimney used during testing (4" ICC EXCEL Pellet Pipe) and the location of the sampling ports in the chimney. (3.) A diagram of the EPA M5G 6" diameter dilution tunnel used by Myren Consulting during EPA Certification testing, (4.) 3 pages with photos showing the front, back and right and left sides of the test unit. Note that the back photo shows how the venting system was attached to the stove along with the static pressure probe and the stack temperature at 1 foot probe. And there is also a full page photo of the testing installation configuration, i.e., the stove with attached flue pipe venting into the dilution tunnel hood, (5.) photos of a North Idaho Energy log, the densified fuel log that was used during testing, (6.) A copy of the letter from EPA granting Myren Consulting, Inc accreditation under the 2015 NSPS, (7.) a copy of the new EPA Laboratory Accreditation Certificates (#2) for Myren Consulting's Colville lab, (8.) a copy of the 30 day advance certification test notification sent to EPA for the week the unit was tested, (9.) four pages with information that is pertinent to the test run and (10.) copies of the following information:

- (1.) A memo dated 26 November 2013 sent to Dr. Sanchez at EPA that initiated the development of a testing protocol for a stove that burns densified fuel logs.
- (2.) A memo dated 30 April 2016 sent to Mike Toney and Stef Johnson at EPA (OAQPS, RTP) that provided additional information about the stove, the fuel it burns and what the test protocol might be.
- (3.) A letter dated 6 December 2016 sent to Mike Toney (EPA, OAQPS, RTP) about whether (or not) Myren Consulting, Inc. could test the unit.
- (4.) Emails from Toney and Sanchez granting Myren consulting, Inc. approval to test the unit with the agreed upon protocol, which is basically a variant of ASTM E 2779 except that fuel had to be added during the test run and the primary air control (PAC) was adjusted manually to change the dry burn rate (DBR).

Note: You can see by the photos that the unit has undergone substantial revision since development began. The manufacturer's personnel listed in the memo addresses also reflect the ownership changes (3X) that have occurred during the product development process.

Myren Consulting, Inc. conducted the first EPA certification test on 1/9/17 and prepared and submitted a report to Omni, the manufacturer's certifying third party entity. A review of the test data in the report revealed that the dry burn rate (DBR) (kg/h) for the medium segment of the test was >50% of the DBR of the High burn segment. Because of this technicality, the third party certifying entity would not issue a Certificate of Conformity. This led the manufacturer and Myren Consulting to approach EPA with a revised testing protocol that reversed the burn rate segments, i.e., instead of running another Hi, Medium, Low sequence the burn rate segments would be Low, Medium and High. The thought was that it might be possible to achieve a Medium burn that was <50% of the high burn using this testing sequence. Unfortunately, due to the way the appliance burns it was not possible to get a Medium burn that had a DBR that was< 50% of the High burn, no matter how the stove was operated. Once it became evident that it was impossible to get a Medium burn that had a DBR that was <505 of the High burn, the manufacturer asked that this requirement be waived because the unit really isn't a pellet stove and the use of an arbitrary pellet stove requirement to prevent the unit from being certified wasn't fair. The correspondence that eventually led to an agreed upon testing protocol is also in the following pages and includes copies of:

1. A letter dated 21 July 2017 from Ben Myren, MCI to Stef Johnson, EPA/OAQPS which recognizes that EPA will require one additional certification test run before it will grant certification for the OPTIMUM.

2. A letter dated 23 July 2017 from Ben Myren, Myren Consulting, Inc. (MCI) to Stef Johnson, EPA/OAQPS that contains a proposed revised testing protocol for the OPTIMUM.

3. A letter date 23 July 2017 from Ben Myren, MCI to Dr. Rafael Sanchez, EPA/OECA that request that MCI be allowed to unseal the OPTIMUM test stove so that an additional test run can be done.

4. A letter dated 11 August 2016 from Edward J Messina, EPA, to Sebastian Button, OMNI that addresses specific issues about additional test runs and unsealing stoves. 5. A letter dated 9 August 2017 from Stef Johnson, EPA/AQAD that approves the revised testing proposal contained in the Myren July 23rd letter.

6. A letter and email dated 11 August 2017 from Ben Myren, MCI to Dr. Rafael Sanchez, EPA/OECA that addresses some of the issues that are in the Messina letter that are specific to %)9's OPTIMUM. This response included the submittal on August 11, 2017 of a complete copy to EPA (Sanchez) of the test report that had been prepared and submitted to OMNI for the first certification test run. UPS tracking info also included.

7. A letter dated 12 August 2017 from Ben Myren, MCI to Stef Johnson, EPA/AQAD that proposed another revision to the test protocol. This revision was based upon the manufacturer's data that indicated, that due to the way the unit operates, it is impossible to achieve a Medium burn that has a DBR that was <50% of the high burn's DBR. Option 2 in this letter asked that the 50% requirement be waived.

8. A letter dated 16 August 2017 to Stef Johnson, EPA/AQAD that requested that the manufacturer be allowed to make two design changes to the unit prior to doing any subsequent testing. This letter included some drawings that showed the proposed design changes.

9. An email dated 16 August 2017 from Rafael Sanchez, EPA/OECA that granted permission to unseal the OPTIMUM test stove.

10. A letter dated 22 August 2017 from Stef Johnson, EPA/AQAD to Ben Myren, MCI that approved the proposed testing protocol that was in the 12 August 2017 Myren letter.

11. A copy of an email dated 22 August 2017 from Mike Toney, EPA AQAD to Dusty Henderson, 509 and Ben Myren, MCI which discussed the design changes in the Myren 16 August letter.

12. A letter dated 22 August 2017 from Ben Myren, MCI to Stef Johnson, EPA/AQAD in which the manufacturer modified his design change proposal.

13. A letter dated 23 August 2017 from Ben Myren, MCI to Stef Johnson, EPA/AQAD that contained some additional information in support of the manufacturer being allowed to make one small design change, i.e., the addition of a small tube to deliver a very small amount of air to the top of the feed tube to help reduce condensation in the feed tube and help prevent the logs from sticking in the feed tube.
14. Copies of a series of emails clarifying the situation about how the wood heater must be unsealed and granting the manufacturer's request to add the small air feed tube.
15. A letter dated 30 August 2017 to Rafael Sanchez, EPA/OECA that again clarifies the situation and summarizes the proposed revised testing protocol.
16. Copies of a series of emails that discusses the

situation and the way forward.

17. A copy of an email dated 1 September 2017 in which Mike Toney, EPA/AQAD grants permission to test the unit as was proposed in the Myren 30 August 2017 letter.

The unit was unsealed and tested on 9/5/17 and resealed on 9/6/17.

DISCUSSION:

- (1.) The 2 run test series was done at Myren Consulting's lab in Colville, WA.
- (2.) The test series required 2 test runs.
- (3.) Because the whole testing format for pellet stoves has changed in the new NSPS, there are several revisions to the report format. Specifically the following changes have been made:
 - a. The first page in the Data Summary section is titled Summary Results which reports the test data in the format requested by EPA. This has been altered to reflect the fact that 2 integrated test runs were done on this unit.
 - b. Because the pellet stove test is now an integrated sample test, there are no weighted average calculations because collecting the integrated sample "automatically" generates an "integrated weighted average". Instead of the pages used to calculate a weighted average, there is now a single page titled Average Test Results, which reports the PM emission rate (g/h and lbs./MM Btu output), the overall efficiency (%OE) (HHV and LHV) and CO (g/h and g/lb. of dry fuel) for the unit.
 - c. A new page has been added to the Data Summary Section (p. 3) which summarizes the PM Sampling Train Performance information and addresses the Dual Train Comparison criteria found in ASTM E2515 Section 11.7. The average emission rate calculated and reported on this new page using the data from the 2 PM sampling trains is then also reported on the page titled Integrated Test Results. Also reported on this page are the performance data for the "Room Blank" train and the PM emission rate (g/h) and dry burn rate (DBR) (kg/h) data for the 0-60 minute filter set from Train 1.
 - d. Section 60.534(d) requires that filter sets be changed (switched) at 1 h into a test run on one of the PM sampling trains. This was done on Train 1 during the test run. Thus there are additional data sheets in each test run for the 2 filter sets used

- in Train 1 to accomplish this requirement. As noted above, the PM emission rate for the first hour is reported on the computer spreadsheet for that PM sample and again in the Data Summary section itself.
- e. ASTM E2515 requires 2 PM sampling trains and a third "Room Blank" train. That means there are also additional data sheets for Trains 2 and 3 in the section with the Raw Data sheets for the test run and in the Cal Data Section where the calibration and post test audit data is presented for the equipment used in all 3 of these trains.

Please look at the Table of Contents (p. iv), the Pellet Stove Test Report Page Number Index (pp. vi-vii) and the Individual Test Run Page Index (p. ix) to find any pages of interest. Or call Myren Consulting, Inc. at either 509 685 9458 (Lab)or 509 684 1154 (Office) if further assistance is needed.

RIGHT SIDE

CROSS SECTION OF NORTH IDAHO ENERGY LOG

NORTH IDAHO ENERGY LOG ~ 8.0 LBS./ LOG

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY RESEARCH TRIANGLE PARK, NC 27711

NOV 1 2 2015

OFFICE OF AIR QUALITY PLANNING AND STANDARDS

Ben Myren Myren Consulting, Inc. 512 Williams Lake Road Coleville, WA 99114

Dear Mr. Myren:

Thank you for your recent inquiry regarding the United States Environmental Protection Agency (EPA) wood heater laboratory accreditation program. The review of your reaccreditation letter that you submitted November 10, 2015 is complete and acceptable. Enclosed is your current certificate of accreditation. Myren Consulting, Inc. is accredited under Subpart AAA 40 CFR Standards of Performance for New Residential Wood Heaters Sections (60.534, 60.535) and Subpart QQQQ 40 CFR Standards of Performance for New Residential Hydronic Heaters and Forced-Air Furnaces Sections (60.5476, 60.5477). Please follow the requirements for EPA Test Method 28R Certification and Auditing of Wood Heaters in Appendix A-8 to Part 60-Test Methods 26 through 30B. This approval expires on March 16, 2018, unless renewed by Myren Consulting, Inc.

As a condition of your lab accreditation, Myren Consulting, Inc. must abide by the following provisions: (i) Agree to participate biennially in an independently operated proficiency testing program with no direct ties to the laboratories participating;

(ii) Agree to allow the EPA, regulatory agencies and certifying bodies access to observe certification testing;

(iii) Agree to comply with calibration, reporting and recordkeeping requirements that affect testing laboratories; and

(iv) Agree to perform a compliance audit test at the manufacturer's expense at the testing cost normally charged to such manufacturer if the laboratory is selected by the EPA to conduct a compliance audit test of the manufacturer's model line;

(v) Have no conflict of interest and receive no financial benefit from the outcome of certification testing conducted pursuant to §60.5475;

(vi) Agree to not perform initial certification tests on any models manufactured by a manufacturer for which the laboratory has conducted research and development design services within the last 5 years; (vii) Agree to seal any wood heater on which it performed certification tests, immediately upon completion or suspension of certification testing, by using a laboratory-specific seal.

(viii) Agree to immediately notify the EPA of any suspended tests through email and in writing, giving the date suspended, the reason(s) why, and the projected date for restarting.

Emission test reports should be submitted to EPA's Office of Enforcement and Compliance Assurance, at one of the following addresses:

U.S. Postal Service U.S. EPA Office of Enforcement and Compliance Assurance, Office of Compliance William Jefferson Clinton Building, South Mail Code 2227A 1200 Pennsylvania Ave, NW Washington, DC 20003

Attn: Wood heater Certification Lead

Private Courier U.S. EPA Office of Enforcement and Compliance Assurance, Office of Compliance William Jefferson Clinton Building, South Room 7419D 1200 Pennsylvania Ave, NW Washington, DC 20003

Attn: Woodheater Certification Lead

I would like to thank you for your cooperation in the wood heater certification program.

Sincerely,

Steffan Johnson Measurement Technology Group

Enclosure (2)

cc.

Julius Banks, OECA (2227A) Rafael Sanchez, OECA (2227A) Adam Baumgart-Getz, OID (C304-05) Amanda Aldridge, OID (C304-05) David Cole, OID (C304-05)

Has satisfied the requirements for laboratory accreditation for the certification of wood heaters pursuant to subpart AAA of 40 CFR Part 60, New Source Performance Standards For Residential Wood Heaters and subpart QQQQ of 40 CFR Part 60, Standards of **CERTIFICATE OF ACCREDITATION** MEASUREMENT TECHNOLOGY GROUP Performance for New Hydronic Heaters and Forced Air Furnaces. GROUP LEADER This certifies that: **Myren Consulting, Inc** Methods 28R, 28 WHIH 28 WHIH-PTS November 12, 2015 - March 16, 2018 EFFECTIVE DATE WILED STATES HAY PROTECT

Methods 28R, 28 WHH 28 WHHPTS, All Methods listed in Sections 60.534 and 60.5476 METHODS

•

CERTIFICATE NUMBER

Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

 Office:
 (509) 684-1154
 Lab:
 (509) 685-9458

 Fax:
 (509) 684-3987
 email:myren.ben@gmail.com

DATE: 14 July 2017

TO: Dr. Rafael Sanchez, PhD., EPA

CC: Dusty Henderson, 509 Fabricators Sebastion Button, Omni

FROM: Ben Myren

RE: Wood Heater 30 Day Advance Certification Test Notification

Section 60.534(e)(1) of the Wood Heater NSPS requires that EPA be notified at least 30 days in advance of the start or resumption of EPA Certification Testing for each specific model line. To comply with the above requirement, Myren Consulting, Inc. hereby notifies EPA that Myren Consulting, Inc., 512 Williams Lake Road, Colville, WA 99114 plans to start an EPA Certification Test series on the unit identified below.

UNIT: 509 FABRICATORS DENSIFIED FUEL LOG STOVE

Manufactured by:

509 FABRICATORS	Contact Person: Dusty Henderson
14821 N. Peone Pines Dr. Mead. WA 99201	Phone: 509 993 3767
,	email: unlimitedpower59@yahoo.com

Contact Person: Ben Myren

email: myren.ben@gmail.com

Lab: 509 685 9458 F: 509 684 3987

Monday, September 4, 2017.

The testing will be conducted at:

Myren Consulting, Inc. 512 Williams Lake Road Colville, WA 99114

The 3rd Party Certifying Entity will be

OmniContact Person; Sebastion Button13327 NE Airport WayP: 503 643 3788 F: 503 643 3799Portland, OR 97230email: sbutton@omni-test.com

If you have any questions about this notification, contact me immediately.

-

•:

Ъ	IYREN CONSULTING,	INC.
Unit:	Optimum	
Date:	9/3/2017	
Tech:	A.T. Mules	
	Rev 0 5.21.	2016

n/a

INDUCED DRAFT CHECK

Depending upon the unit being tested, once the appliance was installed on the platform scale or in the test facility and the tunnel flow was determined for 100% smoke capture (See ASTN E 2515, Section 9.2.4), an induced draft check was performed as per EPA M28/ M28R Section 4.1.2/ ASTM E2515 Section 9.2.3 to verify that the dilution tunnel was not inducing a draft of >0.005" H₂O on the unit.

The static pressure probe located ≤ 1.0 foot above the flue collar (EPA M28/ M28R Section 6.2.3/ ASTM E2515 Section 9.2.3) that was connected to a 0.05-0-0.25 inch H₂O manometer was used to make the induced draft determination. The reading resolution on the 0.05-0-0.25 inch H₂O manometer is 0.001 inch H₂O, which is greater than the 0.002 inch H₂O resolution stipulated in EPA M28/ M28R Section 3.9 for the instruments used to measure static pressure.

The results of the induced draft check are as follows:

Flue Damper:

Door	Open: I	rimary	Air (Control	Closed*:	,000	_ ″	H ₂ O
	I	rimary	Air (Control	Open:	,000	_ "	H ₂ O
Door	Closed:	Primar	y Air	Contro	l Closed*:	.000	- "	H ₂ O
,		Primar	y Air	Contro	l Open:	000	_ ″	H ₂ O

*Note: In units with a "stop" in the primary air control, the primary air "closed" induced draft check was conducted with the primary air control set at the "stop". In units that had no "stop", the induced draft check was conducted with the primary air control either fully closed or set so that the amount the primary air orifice was open was at the minimum amount possible.

unit has a combuction fan , so induced drott

Room Blank Probe Location

Myren Consulting Inc.

Unit:	Optimum_
Date:	9/5/17
Tech:	A.T. Myren
Run:	EPA 2

The room blank probe inlet was located <u>46.6</u>"

N.

from the bottom of the dilution tunnel hood.

Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

Fax:	(509) 684-3987	email: myren	.ben@gmail.com
OIIIce:	(509)684-1154	Lab:	(509) 685-9458

DATE: 26 November 2013

TO: Dr. Rafael Sanchez, PhD., EPA

CC: Reyn Smith, Presto Log Stove; Mike Toney, EPA; Gil Wood EPA

FROM: Ben Myren

RE: Certification Testing Protocol for a Densified Fuel Log Stove

What follows is a proposed EPA Certification Testing protocol for an appliance that burns densified fuel logs (Presto Logs).

Densified Fuel Logs:

Densified fuel logs are nothing more than big pellets with a diameter of 5 inches, a (nominal) length of 12 inches and an average weight of 7-8 lbs. These numbers vary from manufacturer to manufacturer. The advertised moisture content is 2.0%, probably taken immediately after production. We have checked the moisture in 1 log and found it to be 6.7%. The increase in moisture content is probably due to the log being exposed to ambient air and moisture after production.

Densified Fuel Log Burner:

Unlike most pellet stoves, there are no electronic controls on the unit other than two on/off toggle switches which turn the combustion and convection air fans on and off. The stove has an angled feed tube that holds at least 3 logs that are gravity fed into the burn area in the firebox. Like a woodstove the burn rate is controlled by the amount of combustion air entering the unit. The combustion air is pulled through the unit by a 178 cfm fan located downstream of the firebox. The amount of combustion air is controlled by a "butterfly damper" in the combustion air inlet and is adjusted by a control rod on the lower right front of the unit. The exhaust gasses leave the firebox through a slot in the top of the burn chamber into a heat exchange chamber that has 20-27" long 1.0"ID tubes with convection air from a 273 cfm fan flowing through them.

2 photos of the unit are attached.

Test Protocol:

We propose the following set up and procedures for testing the unit:

- 1. Use 14-16' of 4" pellet vent as the stack.
- 2. Eliminate the use of the 5 surface thermocouples used to calculate "Delta T". The unit operates in basically a "steady state" mode, so the one hour of preburn before each test should insure a fairly uniform temperature profile start to finish.
- 3. Use the procedures specified in EPA M28, Section 6.7. This includes a 1 one hour preburn and a 2 hour PM emissions test for each possible burn category. Tests will be run with the air control at:
 - A. The maximum possible air setting
 - B. The minimum possible air setting
 - C. With the air control set to produce dry burn rates in any of the required burn categories between what is produced by A. and B.

Note: At present the maximum dry burn rate (DBR) is about 2.35 kg/hr and the minimum DBR is about 1.4 kg/hr. The manufacturer hopes to reduce the minimum DBR to something below 1.25 kg/hr, hopefully to about 1.0 kg/hr. So depending upon what they can accomplish, tests may be needed in all 4 burn categories.

Because the fuel is a densified fuel log, a two hour test should produce viable, accurate test results. However there is one issue that needs to be addressed, that being
the amount of sample catch. One of the most recent 2 hour R&D runs using EPA M5G-1 to collect a PM sample had a front filter catch of 2.0 mg. The back half filter catch was 0 and the acetone wash catch was about 0.2mg with an average sampling rate of 0.4913 cfm. Using ASTM E 2515 (EPA M5G-3) as an alternative not an option because the nominal sampling rate of 0.15 cfm is about 1/3 of the sampling rate used in M5G-1 tests, so the catch would be about 1/3 of the M%G-1 catch, or roughly 0.7 mg. The constant weight tolerance criteria of ± 0.5 mg and ± 0.2 mg for M5G-1 and ASTM E 2515 respectively yields a potential error of $\pm 22.7\%$ for M5G-1 ((1.7 - 2.2)/2.2) and 28.5% for ASTM E2515 ((.5-.7)/.7). To try to reduce this error as much as possible, we propose to increase the sampling rate to at least 1 cfm - as much as possible (1.4 cfm ?) without exceeding the filter face velocity criteria set of 30 ft/min set forth in M5G section 7.2.1. (See attached memo about face velocities and sampling flows.)

We look forward to your reply. Let me know if you have any questions.

Have a Happy Thanksgiving!

Regards, Ben

512 Williams Lake Road

Colville, WA 99114

Office:	(509)684-1154	Lab: (509)685-9458
Fax:	(509) 684-3987	email: myren.ben@gmail.com

DATE: 30 April 2016

TO: Mike Toney, EPA; Stef Johnson, EPA

CC: Adam Baumgart-Getz, EPA; Amanda Aldridge, EPA, Rafael Sanchez, EPA; David Cole, EPA, Larry Brockman, EPA; Dusty Henderson, 509 Fabricators

FROM: Ben Myren

RE: DENSIFIED FUEL LOG WOOD HEATER

I have been working with a client that is developing a wood heater that burns densified fuel logs, a.k.a., Presto logs. The photos below show the most recent prototype burning in my lab on 4/26/16 and some densified fuel logs.

Note the 2 different sizes (diameters). The larger diameter log is a North Idaho Energy Log and the smaller diameter log is an actual Presto log.

This is a close up of a North Idaho Energy Log. It weighs about 8 lbs.

This is a close up of the end of a North Idaho Energy Log. You can see the compacted wood particles.

STOVE OPERATION:

The fuel is gravity fed into the combustion chamber via a 6" ID vertical feed tube that holds 3.5 logs. You can see part of the feed tube in the photo of the stove. The part of the feed tube inside the stove is glowing red hot. The dry burn rate (DBR) is controlled by the combustion air fed into the burn chamber. The unit has 4 combustion air settings: High, Medium, Low and Off. When set on Off, no air enters the firebox. The unit has 2 fans, one for combustion air and the other for convection air.

Since densified fuel logs are nothing more than a "big pellet", I am suggesting that we use ASTM E2779 as the basis for testing the unit. We could easily fill up the tube with logs and run an integrated 6 h test with 1 h on High, 2 h on Medium and 3 h on Low to determine PM emissions and use CSA B415.1-10 to determine the overall efficiency (OE).

My intent with this letter is to start a dialogue with EPA with the end result of the dialogue being an agreed upon alternative testing protocol that can be used to test the stove so that the unit can be certified. I am certain that EPA will have a number of questions about this unit, but at least this memo should get the process started.

I look forward to your comments, questions and answers.

Regards,

Ben Myren President

Myren Consulting, Inc. 512 Williams Lake Road Colville, WA 99114

Office:(509) 684-1154Lab:(509) 685-9458Fax:(509) 684-3987email: myren.ben@gmail.com

Date: 6 December 2016

To: Mike Toney, EPA

. L.,

CC: Adam Baumgart-Getz, EPA; Amanda Aldridge, EPA; David Cole, EPA; Rafael Sanchez, EPA, Steffan Johnson, EPA; Dusty Henderson, 509 Fabricators

From: Ben Myren

RE: Section 60.535(a)(2)(vi)

Section 60.535(a)(2)(vi) states

"...Agree to not perform initial certification tests on any models manufactured by a manufacturer for which the laboratory has conducted research and design services within the past 5 years...".

Myren Consulting, Inc. has done some evaluation testing on at least 2 stove prototypes of a stove designed to burn densified fuel logs during the past 3 years for 2 different firms - same stove, but with a change in ownership. This evaluation testing included both PM emissions and overall efficiency (%OE) measurements. During this testing the manufacturer would make design changes and Myren Consulting, Inc. would conduct the PM and %OE measurements and report the results. The manufacturer would then use that data to make a decision about the next design change. The manufacturer then used all of that information to design and build a new prototype that has many different "k-list" design changes. These changes include a different combustion blower (less CFMs), a different feed tube, a completely redesigned firebox (larger) and a different convection air pathway. Myren Consulting, Inc. had no input in the decisions that led to these design changes and the construction of the latest prototype.

To provide and insure total transparency, Myren Consulting, Inc. has performed 2 PM and %OE evaluation tests (Hi and Low) on this new prototype to verify its performance. The data indicated that the unit was ready for certification testing, so at the manufacturer's request Myren Consulting (1.) submitted some 30 day advance certification test notifications to EPA and (2.) resent a memo to EPA about a proposed test protocol for the unit that was based upon ASTM E2779.

My question is, "Since Myren Consulting, Inc. did not have any input in the development of the design of the most recent prototype other than to supply the manufacturer with test data, can Myren Consulting, Inc. conduct the certification test on this unit?"

I want to be totally upfront on this because I do not want to jeopardize the manufacturer's certification or Myren Consulting, Inc.'s laboratory accreditation. When Myren Consulting, Inc. has done R&D work on a unit, I have referred the manufacturer to a different Lab for the actual certification testing. Case in point, the Kiwi 2.1 VcV stove. I look forward to your reply.

Regards,

Ben Myren

Test Protocol for the Densified Fuel Log Stove

5 messages

Alben T. Myren Jr <myren.ben@gmail.com> To: Mike Toney <toney.mike@epamail.epa.gov>, Dusty Henderson <unlimitedpower59@yahoo.com>

Tue, Dec 27, 2016 at 6:51 PM

Mike.

Received the OK from Sanchez to test the stove that burns densified fuel logs. The manufacturer is bringing the stove to Colville tomorrow so we can start aging it. So by 1.3.17 we will be ready to test. I have turned in 30 day certification test advance notices for the unit for the weeks starting on 1.2.17 and 1.9.17. I know the manufacturer wants to test so he can have numbers for the trade show. So where are we on the protocol? Do I need to turn in some more 30 day advance notices for this stove?

Ben

Toney, Mike <Toney.Mike@epa.gov>

Wed, Dec 28, 2016 at 6:55 AM To: "Alben T. Myren Jr" <myren.ben@gmail.com>, Dusty Henderson <unlimitedpower59@yahoo.com> Cc: "Johnson, Steffan" <johnson.steffan@epa.gov>

Hi Ben,

Please call me regarding the protocol if you need to. I looked in my email but did not see one. I know what we talked about regarding the densified pellet heater using ASTM 2779 for the test method. Since Rafael gave you approval you can test using ASTM 2779 for the pellet heater and ASTM 2515 for particulates. Remember to take the first hour filter pull as required in the rule and to measure the CO during testing and to conduct CSA B415 for efficiency. We also need a preburn before testing just like regular wood heater testing, so more than one pellet maybe required during testing but this will be your call. Have a great test.

From: Alben T. Myren Jr [mailto:myren.ben@gmail.com] Sent: Tuesday, December 27, 2016 9:51 PM To: Toney, Mike < Toney. Mike@epa.gov>; Dusty Henderson < unlimitedpower59@yahoo.com> Subject: Test Protocol for the Densified Fuel Log Stove

Mike.

Received the OK from Sanchez to test the stove that burns densified fuel logs. The manufacturer is bringing the stove to Colville tomorrow so we can start aging it. So by 1.3.17 we will be ready to test. I have turned in 30 day certification test advance notices for the unit for the weeks starting on 1.2.17 and 1.9.17. I know the manufacturer wants to test so he can have numbers for the trade show. So where are we on the protocol? Do I need to turn in some more 30 day advance notices for this stove?

Ben

Gmail - Test Protocol for the Densified Fuel Log Stove

Alben T. Myren Jr <myren.ben@gmail.com>

Wed, Dec 28, 2016 at 8:43 AM To: "Toney, Mike" < Toney. Mike@epa.gov>, "Sanchez, Rafael" <sanchez.rafael@epa.gov>

Cc: Dusty Henderson <unlimitedpower59@yahoo.com>, "Johnson, Steffan" <johnson.steffan@epa.gov>

Mike, Attached is the memo I sent earlier about testing the densified fuel log stove. And, yes, we are planning to do (1.) a 1 hour preburn on "High" before the start of the high burn test, (2.) a filter set change at 60 minutes in Train 1 at the end of the high burn test segment, (3.) collect all of the necessary data for B415 for CO and %OE, (4.) and reload the stove (add a log or logs) sometime during the test. We will try to sort out when to add the extra logs during aging. My thought is to add the log(s) at the end of the 2 h Med burn segment. It only takes about 15-30 seconds to add a log, so the impact on the data should be minimal So if you would add the logs at 176 minutes, the stove would have a chance to recover by the next reading (180 minutes). (Remember that the added logs will be on top of the logs that are actually burning at the bottom of the feed tube, so it will be a while before the added logs actually start to burn.) At which time you would take the necessary readings and turn the stove to Low. That would make it easy to do the B415 entries.

Rafael, Dusty is bring the stove up to the lab today. We plan to set it up and start aging it as soon as it arrives. As noted above we will try to sort out when to add the logs during aging. If all goes as planned we will do the integrated test series next week, probably on Wed.

Any thoughts or input from either DC or RTP is welcome.

REGARDS. Ben [Quoted text hidden]

TONEY DENSIFIED FUEL LOG TESTING PROTOCOL MEMO 4.30.16.doc @) 439K

Toney, Mike < Toney. Mike@epa.gov>

Wed, Dec 28, 2016 at 8:48 AM

To: "Alben T. Myren Jr" <myren.ben@gmail.com>, "Sanchez, Rafael" <Sanchez.Rafael@epa.gov> Cc: Dusty Henderson <unlimitedpower59@yahoo.com>, "Johnson, Steffan" <johnson.steffan@epa.gov>

Hi Ben,

I remember the email now. You are good to go.

From: Alben T. Myren Jr [mailto:myren.ben@gmail.com] Sent: Wednesday, December 28, 2016 11:44 AM To: Toney, Mike < Toney. Mike@epa.gov>; Sanchez, Rafael < Sanchez. Rafael@epa.gov> Cc: Dusty Henderson <unlimitedpower59@yahoo.com>; Johnson, Steffan <johnson.steffan@epa.gov> Subject: Re: Test Protocol for the Densified Fuel Log Stove

[Quoted text hidden]

Alben T. Myren Jr <myren.ben@gmail.com> To: "Toney, Mike" < Toney. Mike@epa.gov>

Thank You! We will run the test on Wed of next week. Ben [Quoted text hidden]

Had to delay testing de to technical issues and weather (CON). Tested unit on 1.9, 17

Wed, Dec 28, 2016 at 1:48 PM

512 Williams Lake Road

Colville, WA 99114

Office: (509)684-1154 Lab: (509)685-9458 email: <myren.ben@gmail.com>

Date: July 21 2017

To: Stef Johnson, OAQPS, RTP, EPA

CC: Mike Toney, EPA; Adam Baumgart-Getz, EPA, Dr. Rafael Sanchez, EPA; Dusty Henderson, 509

From: Ben Myren

RE: REVISEDTESTING PROTOCOL FOR THE 509 OPTIMUM TEST STOVE

509 Fabricators is in receipt of a letter (email) from EPA (Johnson, OAQPS, RTP) in which EPA requests one additional test run on 509's Optimum which burns densified fuel log stove to demonstrate that the stove can achieve a medium dry burn rate that is less than 50% of the high burn rate. On behalf of 509 Fabricators, I am submitting the following revised test protocol to EPA. This revised protocol is based upon our discussions during our brief meeting on 7.21.17 in Albany, NY. If you have any questions about this proposed revision to the test protocol, please contac6 me immediately.

Regards,

Ben Myren

512 Williams Lake Road

Colville, WA 99114

Fax:	(509) 684-3987	email: myren.ben@gmail.com
Office:	(509)684-1154	Lab: (509)685-9458

DATE: 23 July 2017

TO: Stef Johnson, EPA, OAQPS, RTP

CC: Mike Toney, EPA; Adam Baumgart-Getz, EPA; Dr. Rafael Sanchez, EPA; Dusty Henderson, 509

FROM: Ben Myren

RE: Revised Certification Testing Protocol for a Densified Fuel Log Stove

What follows is a revised proposed EPA Certification Testing protocol for the 509 Optimum wood heater, an appliance that burns densified fuel logs ("Presto" Logs).

Densified Fuel Logs:

Densified fuel logs are nothing more than big pellets with a diameter of ~5 inches, a (nominal) length of 12 inches and an average weight of 7-8 lbs. These numbers vary from manufacturer to manufacturer and form log to log. The advertised moisture content is 2.0%, probably taken immediately after production. We have checked the moisture in 1 log and found it to be 6 - 7%. The increase in moisture content is probably due to the log being exposed to ambient air and moisture after production.

Densified Fuel Log Burner:

Unlike most pellet stoves, there are no electronic controls on this unit other than on/off toggle switches which turn the combustion and convection air fans on and off. The stove has a vertical feed tube that holds about 3.5 logs that are gravity fed into the burn area in the firebox. Like a woodstove the burn rate is controlled by the amount of combustion air entering the unit. The combustion air is pulled through the unit by a combustion air fan located downstream of the firebox. The amount of combustion air is controlled by a slider plate in the combustion air inlet and is adjusted by a control rod on the lower right front of the unit.

Revised Test Protocol:

We propose the following revisions to the test method.

- The ignition period to start the stove. The primary air setting will be set at wide open. The ignition period will last 15-30 minutes, enough to get the fuel ignited and sustain combustion during the 1 hour preburn conducted at the Low setting followed by 3 hours on Low.
- 2. At 15-30 minutes the Primary Air Control (PAC) will be set to the "Low Burn" setting and a 1 hour preburn will commence.
- 3. At the end of the 1 hour of preburn on "Low", the test will start. No change will be made to the PAC, i.e., it will remain on "Low".
- 4. After 3 hours have elapsed, the PAC will be adjusted to the "Medium" setting.
- 5. After 2 hours have elapsed, the PAC will be adjusted to the "High" setting.
- 6. After 1 hour has elapsed, the test is over.
- 7. Fuel will be added when deemed either necessary or appropriate.

As noted in our discussions, this proposed protocol is the exact reverse of the sequence specified in ASTM E2779, which what was used during the first EPA certification test. The required sequence in E2779, 1 hour preburn on high followed by a 1 hour test segment on High, results in an accumulated firebox temperature that is very high and so, because the unit does not have a control board like pellet stoves do, it takes a very long period of time to get the unit to cool down. Add to that a gravity feed system, which depending upon when the fuel is actually added, can cause the burn rate to vary from test segment to test segment. It is hoped that this revised protocol will enable us to demonstrate that the unit can burn at reduced dry burn rates if the unit does not get to hot. (Woodstoves can have the same problem.)

Our plan is to actually try this proposed sequence and see if it will work and then provide EPA with the DBR data to confirm that what is proposed is acceptable. Should we find that what is proposed does not work as hoped, then we will submit a second revised protocol to EPA and try again.

We look forward to your reply. Let me know if anyone has any questions.

Regards,

Ben

512 Williams Lake Road

Colville, WA 99114

Office: (509)684-1154 Lab: (509)685-9458 email: <myren.ben@gmail.com>

Date: July 21 2017

To: Dr Rafael Sanchez

CC: Stef Johnson, EPA; Mike Toney, EPA; Adam Baumgart-Getz, EPA, Dusty Henderson, 509

From: Ben Myren

RE: UNSEALING 509 OPTIMUM TEST STOVE

509 Fabricators is in receipt of a letter (email) from EPA (Johnson, OAQPS, RTP) in which EPA requests one additional test run on 509's Optimum stove which burns densified fuel logs. The purpose of this additional test run is to demonstrate that the stove can achieve a medium dry burn rate that is less than 50% of the high burn rate. On behalf of 509 Fabricators I am submitting this request to EPA so that we can unseal the original test stove and use it for the additional test run. If you have any questions about this request, please contact me immediately.

Regards,

Ben Myren

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

AUG 1 1 2016

OFFICE OF ENFORCEMENT AND COMPLIANCE ASSURANCE

Sebastian Button Testing Supervisor OMNI-Test Laboratories, Inc. 13327 NE Airport Way Portland, Oregon 97230

RE: OMNI-Test Laboratories, Inc. (OMNI) November 20, 2015 Request for Clarification concerning the 2015 Standards of Performance for New Residential Wood Heaters, New Residential Hydronic Heaters and Forced-Air Furnaces (Subparts AAA and QQQQ) (2015 Standards)

Dear Mr. Button:

This letter is in response to the three November 20, 2015, OMNI letters requesting clarification of several issues under 40 CFR 60 subparts AAA and QQQQ. In the letters, OMNI requested clarification of several hypothetical scenarios and asked questions that do not directly address the applicability of the 2015 Standards. The U.S. Environmental Protection Agency (EPA) finds these questions outside the scope of an applicability determination. The term "applicability determination" is limited to the Agency's formal decisions, issued in response to a non-hypothetical and site-specific request about the applicability of a specific rule to a specific facility. Therefore, in lieu of issuing an applicability determination, this letter provides the following regulatory interpretations.

<u>Oriestion 1:</u> Do the 2015 Standards allow unscaling of a wood heater, for which a full certification test series has not been completed, for further testing?

Answer 1: The 2015 Standards do not specifically address the unsealing of a wood heater for which a test laboratory has suspended a compliance test. As provided in 40 CFR 60 subparts AAA and QQQQ, sections 60.535(a)(2)(vii) and 60.5477(a)(2)(vii), respectively, an EPA-approved test laboratory is required to "...seal any wood heater on which it performed certification tests, immediately upon completion or suspension of certification testing, by using a laboratory-specific scal." Sections 60.535(a)(2)(vii) and 60.5477(a)(2)(viii) require the EPA-approved test laboratory to immediately provide written notification to the EPA of any suspended tests, and submit the operation and test data that was obtained prior to the tests being suspended. However, sections 60.535(a)(2)(viii) and 60.5477(a)(2)(viii) also require the test laboratory to provide written notification to EPA as to when testing is scheduled to be restarted.

Therefore, EPA interprets such sections as to allow the unscaling of a wood heater for the purpose of further testing in specific circumstances, which we have outlined below.

<u>Question 2:</u> Can the manufacturer provide new parts or make simple modifications to the sealed wood heater in lieu of making and shipping a new prototype?

<u>Answer 2:</u> Yes. However, the wood heater cannot be unscaled for the purpose of providing new parts or making modifications until the following steps are taken:

- The test laboratory must submit the operation and test data obtained from the suspended test to EPA.

- When submitting the operation and test data, the laboratory must also provide a written request to unseal the wood heater. The request is to include a detailed description of the modifications to be performed by the test laboratory on the unsealed wood heater and confirmation that the tested wood heater will be re-sealed in accordance with the 2015 Standards.

- After the EPA has reviewed the operation and test data along with the written request to unseal the wood heater, the EPA will notify the test laboratory and the manufacturer as to whether the wood heater may be unsealed. If EPA allows for the wood heater to be unsealed, only the test laboratory may unseal the heater. (See EPA Letter WDS-132 (February 21, 1990), https://cfpub.epa.gov/adi/pdf/adi-woodstoves-wds-132 pdf)

Once the wood heater is unscaled, the test laboratory may make modifications to the heater and begin a new test series. Any changes made by the test laboratory to the heater (along with engineering drawings) must be documented and submitted to the EPA.
All results of the new test series along with a complete test report must be submitted to the EPA.

- Upon completion of the new test series, the wood heater must be re-scaled with a labspecific scal in accordance with the 2015 Standards. (60.535(a)(2)(vii)).

<u>Question 3</u>; Does a wood heater that has undergone an incomplete test certification have to be sealed and archived in perpetuity?

<u>Answer 3:</u> No. However, when the wood heater is scaled per sections 60.535(a)(2)(vii) and 60.5477(a)(2)(vii), the wood heater must remain scaled until the operation and test data obtained from the suspended test is submitted by the test laboratory and reviewed by the EPA. Once the data is reviewed, the EPA will notify the test laboratory and the manufacturer that the wood heater may be unscaled. There are no specific retention requirements in the 2015 Standards for a scaled wood heater that never completes certification testing.

<u>Ouestion 4</u>; What are the certification requirements under 40 CFR 60 subpart AAA section 60.533(c)?

Answer 4: Under certain circumstances and as provided in 40 CFR 60 subpart AAA section 60.533(c), the EPA could have issued a conditional, temporary certificate of compliance to a manufacturer if it had submitted a full test report by an EPA-approved test laboratory and a complete application. The application must have included all required compliance statements by the manufacturer with the exception of a certificate of conformity by an EPA-approved third-

party certifier. The conditional, temporary certificate of compliance would have been valid until May 16, 2016, and would have allowed the manufacture and sale of the affected wood heater model line until such date or until the Administrator completed the review of the application, whichever was earlier. By May 16, 2016, the manufacturer would have had to submit a certificate of conformity by an EPA-approved third-party certifier.

<u>Question 5:</u> Are the certifications of conformity that an EPA-accredited test laboratory submitted to the EPA "de facto temporary certificates of compliance" because they were not required for EPA to issue a temporary certificate of compliance to a manufacturer?

<u>Answer 5:</u> No. As provided in 60.533(e), a conditional, temporary certificate of compliance could have only been granted by the EPA if the manufacturer submitted a complete certification application (i.e., application must have included the full test report by an EPA-approved test laboratory and all required compliance statements by the manufacturer with the exception of a certificate of conformity by an EPA-approved third-party certifier) that met all the requirements of section 60.533(b).

<u>Question 6:</u> Would submission of a certificate of conformity with a complete certification package, (i.e., application and full test report), prior to May 16, 2016, have made a manufacturer requesting certification ineligible to receive a temporary certificate of compliance?

Answer 6: No. The manufacturer could have received a conditional, temporary certificate of compliance under 60.533(e) until the EPA review of the application was complete. However, if the manufacturer submitted a complete package including the certificate of conformity, the temporary certificate would not have been necessary as EPA could have issued the permanent certificate.

<u>Question 7:</u> What are the requirements for quality assurance audits for model lines that are deemed certified under section 60.533(h)(1)?

<u>Answer 7:</u> As provided in section 60.533(m), "the manufacturer of a model line with a compliance certification under paragraph (h)(1) of this section must conduct a quality assurance program that satisfies the requirements of this paragraph (m) by May 16, 2016." The requirements for quality assurance audits for model lines that are deemed certified under \$60.533(h)(1) are as follows:

- Specific inspection and testing requirements for ensuring that all units within a model line are similar in all material respects that would affect emissions to the wood beater submitted for certification testing and meet the emissions standards in section 60.532;
- (2) Must be approved by the third-party certifier as part of the certification of conformity process specified in section 60.533(f);
- (3) Include regular (at least annual) unannounced audits by the third-party certifier under ISO-IEC Standard 17065 to ensure that the manufacturer's quality assurance plan is being implemented;
- (4) Include a report for each audit under ISO-IEC Standard 17065 that fully documents the results of the audit. The third-party certifier must be authorized and required to submit

all such reports to the Administrator and the manufacturer within 30 days of the audit. The audit report must identify deviations from the manufacturer's quality assurance plan and specify the corrective actions that need to be taken to address each identified deficiency;

(5) Within 30 days after receiving each audit report, the manufacturer must report to the third-party certifier and to the Administrator its corrective actions and responses to any deficiencies identified in the audit report. No such report is required if an audit report did not identify any deficiencies. (section 60.533(m(1)-(5))

<u>Question 8:</u> Are manufacturers required to contract the services of a third-party certifier to conduct quality assurance audits?

Answer 8: Yes. On or after May 16, 2016, manufacturers are required by section 60.533(m) to contract the services of a third-party certifier to conduct quality assurance audits.

<u>Question 9</u>: What are the requirements for deemed certified wood heaters under section 60.533(m)?

<u>Answer 9:</u> As provided in section 60.533(m), manufacturers must have had in place by May 16, 2016, a quality assurance program that satisfied the requirements under section 60.533(m)(1) through (5). However, the third-party certifier was not required to issue a certificate of conformity because the 2015 Standards provided a path for model lines to be deemed certified without having to undergo the rigors of the third party certifier process if they satisfied the requirements under section 60.533(h)(1). As noted above, the periodic third party quality assurance audit process would still need to be conducted.

<u>Question 10:</u> Does a certificate of compliance issued prior to May 15, 2015, at an emission level less than or equal to the 2015 emission standard need to be renewed before May 15, 2020?

Answer 10: No. Manufacturers of model lines that were deemed certified per section 60.533(h)(1) and for which a certificate of compliance had been issued prior to May 15, 2015, demonstrating an emission level less than or equal to the 2015 emission standards, do not need to renew their certificates until May 15, 2020. The preamble and the regulatory text of section 60.533(h)(1) state that heaters with EPA certifications under the 1988 Standards that show compliance with the Step 1 emission levels are automatically deemed certified to meet the Step 1 emission limits under the 2015 Standards until May 15, 2020. No separate certification is required.

The EPA considers this response to be a regulatory interpretation to a request for clarification. This response has been prepared in consultation with the Office of General Counsel and the Office of Air Quality Planning and Standards. If you have any questions, please contact Rafael Sanchez of my staff at 202-564-7028 or email at <u>sanchez.rafael@epa.gov</u>.

Sincerely

Edward J. Strassina, Director Monitoring, Assistance, and Media Programs Division Office of Compliance

ce: Amanda Aldridge, OAQPS Adam Baumgart-Getz, OAQPS Scott Jordan, OGC Sara Ayres, OC

1----

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY

RESEARCH TRIANGLE PARK, NC 27711

AUG 0 9 2017

Mr. Alben Myren Myren Consulting, Inc 512 Williams Lake Road Coleville, WA 99114

OFFICE OF AIR QUALITY PLANNING AND STANDARDS

Dear Mr. Myren,

I am writing in response to your July 23, 2017 letter we received on July 25, 2017 regarding testing of the 509-1 Optima wood heater manufactured by 509 Fabrications Inc, 14821 N. Peone Pines Dr, Mead, Washington, 99021. As we understand it, the 509-1 Optima wood heater is subject to the testing requirements of 40 CFR 60, Subpart AAA, Standards of Performance for New Residential Wood Heaters (Subpart AAA) and is considered a pellet fuel wood heater. The 509-1 Optima is a device that burns densified "Presto Log" fuel logs. The 509-1 Optima does not operate like a traditional pellet wood heater where the fuel feed and combustion air are controlled electronically, but instead it utilizes manual controls. The fuel logs are gravity fed into the burn area and the combustion and convection air are controlled by on/off toggle switches.

You state that the 509-1 Optima was originally tested using the test procedures of ASTM E2779 -11 "Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters" as required by Subpart AAA. The medium burn rate requirement was not obtainable because the heater burn rate was greater than the less than or equal to fifty percent of high burn requirement as defined in the ASTM E2779-11. You believe this higher medium burn rate was due to the heater slowly reducing in temperature and had enough time occurred, the heater would have produced a valid medium burn rate. You are requesting an alternative test method procedure for the 509-1 Optima wood heater such that the burn rate category sequence outlined in ASTM 2779-11- high, medium, and low - be reversed to low, medium and high as you believe this revised order would produce a proper medium burn rate.

With the caveats listed below, we approve your alternative method request for testing the 509-1 Optima wood stove, as required in Subpart AAA, Section 60.534(d) to reverse the order of the burn rate categories tested to low, medium, and high. In conducting this testing, the manufacturer or approved test lab must also measure the first hour of particulate matter emissions for each test run using a separate filter in one of the two parallel sampling trains. These results must be reported separately and also included in the total particulate matter emissions per run. As per Section 60.534(e) of Subpart AAA, the manufacturer must have the approved test laboratory measure the efficiency, heat output and carbon monoxide emissions of the tested wood heater using Canadian Standards Administration (CSA) Method B415.1-10. For particulate matter emission concentrations, ASTM E2515-11 must be used.

The following changes to ASTM E2515-11 "Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel" may be followed:

- 1. Sample filters may be Pall TX-40 or equivalent Teflon-coated glass fiber, and 47 mm, 90 mm, or 100 mm in diameter.
- 2. Four inch filters are acceptable.

This approval must be included in your certification test report. If you have additional questions regarding these decisions, please contact Michael Toney of my staff at (919) 541-5247.

Sincerely, Steffan M. Johnson, Group Leader

Steffan M. Johnson, Group Leader Measurement Technology Group

cc:

Michael Toney, EPA/AQAD (E143-02) Rafael Sanchez, EPA/OECA (2227A) Adam Baumgart-Getz, EPA/OID (C311M) David Cole, EPA/OID (C311M) Amanda Aldridge, EPA/OID (C311M) Ben Myren, Myren Consulting, Inc. Dusty Henderson, 509 Fabrictions, Inc. From: Alben T. Myren Jr [mailto:myren.ben@gmail.com]

Sent: Friday, August 11, 2017 10:00 AM

To: Sanchez, Rafael <Sanchez.Rafael@epa.gov>; WoodHeaterReports <WoodHeaterReports@epa.gov>; Messina, Edward <Messina.Edward@epa.gov>; Aldridge, Amanda <Aldridge.Amanda@epa.gov>; Baumgart-Getz, Adam <Baumgart-Getz.Adam@epa.gov>; Jordan, Scott <Jordan.Scott@epa.gov>; Sara Ayers <ayers.sara@epa.gov>; Johnson, Steffan <johnson.steffan@epa.gov>; Toney, Mike <Toney.Mike@epa.gov>; Dusty Henderson <unlimitedpower59@yahoo.com>; Sebastian Button <sbutton@omni-test.com> Subject: 509 Fabricator's Optimum wood heater

Rafael, et al.

Please see attached information.

Regards,

Ben Myren

Myren Consulting, Inc.

509 684 1154 (office)

509 685 9458 (lab)

 Alben T. Myren Jr <myren.ben@gmail.com>
 Thu, Aug

 To: "Sanchez, Rafael" <Sanchez.Rafael@epa.gov>
 Cc: Dusty Henderson <unlimitedpower59@yahoo.com>, Sebastian Button <sbutton@omni-test.com>

Rafae!, Thank you. Ben Myren [Quoted text hidden]

Thu, Aug 17, 2017 at 7:35 AM

512 Williams Lake Road

Colville, WA 99114

Office: (509) 684-1154 Lab: (509) 685-9458

email:myren.ben@gmail.com

509 FAB Optimum Sanchez 8.11.17 Letter

11 August 2017

Dr. Rafael Sanchez, PhD. U.S.EPA Office of Enforcement and Compliance Assurance Office of Compliance William Jefferson Clinton Building, South Room 7419D 1200 Pennsylvania Ave., N.W. Washington, DC 20003

Dear Dr. Sanchez:

Myren Consulting, Inc. (MCI) is in receipt of a letter dated August 11, 2017 that is addressed to Sebastian Button, Testing Supervisor at OMNI-Test Laboratories, Inc. (OMNI) from Edward J. Messina, Director of Monitoring, Assistance, and Media Programs Division in EPA's Office of Compliance. The letter is in response to a number of questions Mr. Button raised about a number of issues under 40 CFR Subparts AAA and QQQQ. Some of the questions raised, specifically questions 1, 2 and 3, apply to EPA certification testing Myren Consulting, Inc. did for 509 Fabricators, Inc. (509) on their OPTIMUM wood heater that burns densified fuel logs. Of the other questions, just question 8 would seem to generically apply to 509 because the certification testing was done after May 15, 2017. I know for a fact that 509 has initiated action to acquire the services of a third-party certifier to conduct quality assurance audits, so that is not an issue.

I will now respond to the questions that do apply to 509 on a question by question basis.

Question 1:

- 1. As required the test stove was sealed by MCI immediately after certification testing was completed. Photographs of the sealed stove are in the Storage section in the original test report prepared for 509.
- 2. No written notification of suspension of testing was sent to EPA because at the time testing was finished, it

was not anticipated that any additional testing would be required, i.e., it was thought testing on the OPTIMUM was done.

- 3. MCI is sending EPA (Sanchez) today via one day (UPS Red) a complete copy of the EPA certification test report that was prepared for 509 and eventually sent to OMNI. This copy of the EPA certification test report will provide EPA with all of the operation and test data for the EPA certification test that was conducted on the OPTIMUM on January 9, 2017. COMMENT: The OPTIMUM burns densified fuel logs and an alternative test method was developed for the unit because none of the operating and fueling protocols in the other wood heater test methods would work for the unit. Copies of the back and forth exchanges between the staff of EPA's Measurement Technology Group in RTP and MCI that led to the development of the protocol that was used during EPA certification testing are in the
- Introduction Section of the test report.
 4. On July 14, 2017 MCI submitted 6 thirty day advance written notifications to EPA (Sanchez) for 6 consecutive weeks starting with the week beginning on August 14, 2017 and ending on September 18, 2017. (Copies of these 6 notifications accompany this letter.) Additional notifications may be sent to EPA to insure that once an agreed upon way forward is reached, 509 can conduct an additional test or tests immediately.
- 5. As of August 11, 2017 the test unit is still sealed and is in MCI's lab in Colville, WA.

Question 2:

- 1. As noted above in response 3 to Question 1, MCI will be sending EPA (Sanchez) a complete copy of the original certification test report via a one day courier today.
- 2. On July 21, 2017 MCI sent a memo to EPA specifically requesting that MCI be allowed to unseal the OPTIMUM test unit. The request contained the reason for the request, i.e., 509 wishes to conduct an additional test on the unit to demonstrate that the dry burn rate (DBR) for the Medium setting is less than 50% of the DBR for the High burn. (A copy of that request accompanies this letter.)
- 3. To that end, on behalf of 509 MCI has submitted a request for a modified alternative test protocol to the Measurement Technology Group in RTP on July 23, 2017 and has received formal approval on August 9, 2017 from the Measurement Technology Group to use that protocol to conduct an additional certification test accordingly. (A copy of both the modified alternative test protocol

proposal and EPA's approval accompany this letter.) At this time it is not anticipated that any physical modifications will need to be made to the wood heater. Should physical modifications be deemed necessary, MCI will contact EPA and provide a detailed description of the proposed modifications prior to making them.

- 4. The wood heater will be resealed in accordance with the language in the 2015 NSPS immediately after the additional testing has been completed.
- 5. Only MCI will unseal the wood heater.
- 6. All the necessary specified documentation and data will be provided to EPA in the test report that contains the data for any and all additional test runs that are performed on the unsealed wood heater.

Question 3:

1. This question does not really seem to apply because 509 does intend to certify the OPTIMUM, so the test unit will need to sealed and archived in perpetuity. See the answer to Question 2, #4 above.

If you or anyone else has any questions about the information in this letter or in the test report, please contact me immediately.

Sincerely,

Alben T. Myren Jr. President

CC: Edward Messina, OC Amanda Aldridge, OAQPS Adam Baumgart-Getz, OAQPS Scott Jordan, OGC Sara Ayers, QC Steffan Johnson, OAQPS, EMG Mike Toney, OAQPS, EMG Dusty Henderson, 509 Fabricators Sebastian Button, OMNI

Your parcel has been delivered

iShip_Services@iship.com

Mon 8/14/2017 2:48 PM

To:lifelinewa@hotmail.com <lifelinewa@hotmail.com>;

Your parcel has been delivered

Join our email program to receive exclusive offers and resources

Your parcel has been delivered

The parcel to U.S. EPA-Office of Compliance has been delivered.

Your shipment information

Who sent it... Myren Consulting

(Sender's street address omitted intentionally from this email) COLVILLE, WA 99114-8614

Who will receive it... U.S. EPA-Office of Compliance Dr. Rafael Sanchez, PhD. (Recipient's street address omitted intentionally from this email) WASHINGTON, DC 20004-2403 US Mon 14 Aug 2017 09:15 AM

Who is carrying it... The UPS Store #4352 509-684-3340

Tracking your item

Carrier detail... UPS Next Day Air Saver

Tracking details... Tracking No.: 1Z18WA201393898472 Shipment ID: MM8ESP6TVJYVK Order / Item #: --Reference #: --

Ship date Friday, August 11, 2017

Delivery date... Mon 14 Aug 2017 09:15 AM

512 Williams Lake Road

Colville, WA 99114

84-1154 Lab: (509)685-9458 email: myren.ben@gmail.com

Date: 12 August 2017

To: Stef Johnson, EPA/AQAD

(509) 684 - 1154

CC: Mike Toney, EPA/AQAD; Rafael Sanchez, EPA/OECA; Adam Baumgart-Getz, EPA/OID; David Cole, EPA/OID, Amanda Aldridge, EPA/OID; Dusty Henderson, 509

From: Ben Myren

Office:

RE: REVISED ALTERNATIVE TESTING PROTOCL FOR THE OPTIMUM WOOD HEAT MANUFACTURED BY 509 FABRICATORS.

In a memo to EPA (Johnson) dated 23 July 2017 Myren Consulting proposed a second alternative test method for the OPTIMUM wood heater manufactured by 509 Fabricators of Mead, WA. The OPTIMUM burns densified fuel logs. One EPA 6 hour integrated certification test has been performed on the OPTIMUM and the emission rate was 1.89 g/h. Unfortunately the unit failed to meet one of the test criteria in ASTM E2779-10, that being that the dry burn rate (DBR) of the Medium burn segment of the integrated test had to be $\leq 50\%$ of the DBR of the Maximum segment's DBR. Since that proposal was submitted to EPA, the manufacturer has been burning a unit trying to achieve a Medium test segment with a DBR that is $\leq 50\%$ of the DBR of the Maximum segment's DBR and has not been able to successfully meet that requirement. The problem is that the firebox (firepot) contains a lot of brick which is slow to either accumulate or release heat and this heat release rate affects the DBR. In short, we are in one of those "Can't get there from here" situations. Thus I think we need to rethink what the certification requirements are and/or need to be for this unit.

Here are some thoughts for consideration.

- 1. It is a one of a kind unit.
- 2. It burns densified fuel logs that weigh between 5 and 8 lbs.
- 3. It is not a pellet stove as is defined in Section 60.531 Pellet Stove because it does not burn pellets or chip fuel with pellets being defined in Section 60.531 Pellet Fuel "...as refined and densified fuel shaped into small pellets or briquettes..." with the word of interest being small. A 5 or

8 lb. fuel log is not *small* in any sense of the word when compared to a typical pellets burned in a pellet stove.

- 4. The unit does meet the definition of a "...manually controlled heater..." as is defined in Section 3.2.9 in ASTM E2779-10 but it does not have a "...fuel feed system..." as is defined in ASTM E2779-10 Section 3.2.5 as a "...mechanism for delivering fuel from the hopper to the burn pot...". Webster's (1991) defines Mechanism as "...an assembly of moving parts performing a complete functional motion...".
- 5. The unit does have a firebox which could be considered to be a "burn pot" as defined in ASTM E2779-10 Section 3.2.2 and a fuel feed tube which could be considered to be a "fuel hopper" as per ASTM E2779-10 Section 3.2.7, but there is no fuel feed system as per ASTM E2779-10 Section 3.2.5 to move the fuel from the feed tube to the firebox. That is accomplished by gravity. So the unit is not a Pellet Stove as is currently defined in the NSPS and ASTM E2779-10 because it does not have a fuel feed system.
- 6. When Myren Consulting sent an alternative test method proposal to EPA (Toney. Johnson) on 30 April 2016, ASTM E2779-10 seemed the most likely candidate as the basis for an alternative test method because of the integrated test cycle found in Section 9.4.1 and the fact that densified fuel logs are nothing more than a very large pellet.
- 7. The stumbling block in that thought process is the requirement in ASTM E2779-10 Section 9.4.1.2 that the Medium burn segment have a DBR that is ≤50% of the Maximum burn segment's DBR. We just didn't understand how heat transfer in the feed tube and firebox in the unit worked.

Conclusion:

The OPTIMUN, or any other appliance that burns densified fuel logs for that matter, is not a "Pellet stove" as is defined in either the NSPS or in ASTM E2779-10. Nor does it operate like a pellet stove because it has no fuel feed system. Thus it is a new appliance category, so requiring it to perform like a pellet stove, or a stick stove for that matter, is not an applicable way to assess its performance, as the issue with the ≤ 50 % DBR requirement in Section 9.4.1.2 indicates.

OTPIONS:

There seem to be 2 ways forward.

1. Turn the unit into a Single Burn Rate (SBR) appliance by fixing the Primary Air Control (PAC) at some setting.

(Because the unit is gravity fed, the consumer would then control the DBR by the way they add fuel to the unit.

2. Eliminate the ≤50% DBR requirement for appliances that burn densified fuel logs because that requirement really doesn't seem to apply to this appliance category, i.e., it is an arbitrary requirement carried forward from a test method for another appliance category. (With this option the consumer would be able to control the DBR by the way they add the fuel logs and by adjusting the PAC.)

PROPOSAL:

If 2 above is acceptable, and there isn't any real reason it shouldn't be because this is a new appliance category, 509 proposes to conduct one additional 6 hour integrated test using the reversed DBR testing sequence of 1 h of preburn on Low, 3 h of testing on Low, 2 h of testing on Medium and then 1 h of testing on High that was proposed in a Myren Consulting memo to EPA (Johnson) dated 23 July 2017 and approved in a letter from EPA (Johnson) dated 9 August 2017 and then average the results from the 2 tests to determine compliance with EPA's 2020 standard of 2.0 g/h in Section 60.532(b). 509 is more than willing to test to determine compliance as long as there is a way forward to certification and being able to market their product. This is a very unique product and while it probably has a limited market, this kind of innovation needs to be encouraged by finding a way to work together so it can be brought to market.

We thank you in advance for your consideration of this revised proposal and look forward to your reply and to working with you all and finishing this project. Both Dusty and I will make ourselves available for a conference call at any time convenient for EPA if one is deemed necessary.

Highest Regards,

Ben Myren President Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

Office: (509) 684-1154 Lab: (509) 685-9458 _______email:myren.ben@gmail.com

509 FAB Optimum Johnson8.16.17 Memo

Date: 16 August 2017

To: Stef Johnson, EPA/AQAD

CC: Mike Toney, EPA/AQAD; Rafael Sanchez, EPA/OECA; Adam Baumgart-Getz< EPA/OID, David Cole, EPA/OID; Amanda Aldridge, EPA/OID; Dusty Henderson, 509

From: Ben Myren

On 12 August 2017 Myren Consulting, Inc. (MCI) sent a memo to EPA (Johnson, EPA/AQAD) requesting another revision to the Alternative Test Method for Optimum wood heater that burns densified fuel logs that is manufactured by 509 Fabricators of Mead, WA. This memo builds upon the 12 August memo to EPA and is also in response to portions of a letter from EPA dated August 11, 2017 that is addressed to Sebastian Button, Testing Supervisor at OMNI-Test Laboratories, Inc. (OMNI) from Edward J. Messina, Director of Monitoring, Assistance, and Media Programs Division in EPA's Office of Compliance. In that letter, Question 2/ Answer 2 Point 3, states that

"...Once the wood heater is unsealed, the test laboratory may make modifications to the heater and begin a new test series. Any changes made by the test laboratory to the heater (along with engineering drawings) must be documented and submitted to the EPA..."

It is assumed that these changes must happen before any additional testing occurs and that EPA must approve the design changes in advance.

In the 11 August 2017 letter about a revised Alternative Test Method to EPA referenced above, no mention of any design changes was made because none were anticipated. Now, based upon some additional testing, the manufacturer would like to make two design changes which are as follows:

1. The damper plate (primary air control slider) will be modified as is shown in the accompanying drawing. This design change is intended to give better control of the amount of air entering the stove at the lower dry burn rates.

2. The feed tube will have a small air inlet added to it as per the two DWGs DOO. The purpose of this air is to decrease the amount of condensation that occurs in the upper part of the feed tube. It is thought that this condensation is causing the logs to "stick" in the feed tube and thus is at least partially responsible for the varying dry burn rates that have occurred during testing. It is not thought that this additional air will totally eliminate the "sticking", but test data from manufacturer's in-house tests thus far indicates that it does help eliminate some of the "sticking".

Are these two design changes K-list design changes?

- 1. While the change to the damper/ slider plate would seem to be, remember that this unit is an induced draft unit that has a combustion air fan pulling air thru the unit and thus far reducing the amount the damper plate is open has had minimal impact on the dry burn rate, so it is anticipated that this design change will not have a major/ significant impact on the unit's performance.
- 2. The tube for the air being delivered to the feed tube to prevent condensation is 3/8" OD/ 1/4" ID, so the amount of air that is being delivered to the feed tube is very small and that air is being pulled down the feed tube into the fire box, so basically the same amount of air will be entering the fire box/ combustion chamber.

It is hoped that even with the above 2 proposed design changes, Option 2 proposed as the revised Alternative Test Method in my memo dated 12 August 2017 will still be acceptable, i.e., 509 will do one more integrated test run this time starting with the Low burn and ending with the High burn and then average the test results from the 2 runs.

If you or anyone else has any questions about the request/ information in this memo, please contact me immediately.

Sincerely,

1____

Alben T. Myren Jr. President

Alben T. Myren Jr <myren.ben@gmail.com>

RE: 509 Fabricator's Optimum wood heater

2 messages

Sanchez, Rafael <Sanchez.Rafael@epa.gov>

Wed, Aug 16, 2017 at 2:27 PM To: "Alben T. Myren Jr" <myren.ben@gmail.com>, Dusty Henderson <unlimitedpower59@yahoo.com>, Sebastian Button <sbutton@omni-test.com>

Ben,

This email is in response to your July 21, 2017 and August 11, 2017 requests to unseal the 509 Fabricator's Optimum wood heater. I have reviewed the submitted documentation as requested in my August 10, 2017 email, including the August 24, 2017 test report. Therefore, Myren Consulting, Inc. may now unseal the above-referenced wood heater in accordance to the August 10, 2017 email. If you have any questions, please let me know.

Rafael Sanchez, Ph.D.

Wood Heater Program Lead

Air Branch

Monitoring, Assistance, and Media Programs Division

Office of Compliance

U.S. Environmental Protection Agency (EPA)

Room 7149-D

1200 Pennsylvania Ave., NW

MS:2227A

Washington, DC 20460

202-564-7028

202-564-0050 fax

Please make a note of the new inbox for wood heater certification requests: WoodHeaterReports@epa.gov

If you have a wood heater question, please visit the USEPA Wood Heater Compliance Monitoring Program website at http://www2.epa.gov/compliance/wood-heater-compliance-monitoring-program. On that web page, you will find information about the EPA wood heater compliance program including the List of EPA **Certified Wood Heaters**,

This message may contain sensitive and/or privileged information. If you believe you have received this e-mail in error, please notify me and delete the e-mail immediately.

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY RESEARCH TRIANGLE PARK, NC 27711

AUG 2 2 2017

OFFICE OF AIR QUALITY PLANNING AND STANDARDS

Mr. Alben Myren Myren Consulting, Inc. 512 Williams Lake Road Coleville, WA 99114

Dear Mr. Myren,

I am writing in response to your August 12, 2017 letter we received on August 14, 2017 regarding testing of the 509-1 Optimum wood heater manufactured by 509 Fabrications Inc., 14821 N. Peone Pines Drive, Mead, Washington, 99021. As we understand it, the 509-1 Optimum wood heater is subject to the testing requirements of 40 CFR 60, Subpart AAA, Standards of Performance for New Residential Wood Heaters (Subpart AAA). The 509-1 Optimum is a device that burns densified "Presto Log" fuel logs. The 509-1 Optimum does not operate like a traditional pellet wood heater where the fuel feed and combustion air are controlled electronically, but instead it utilizes manual controls. The fuel logs are gravity fed into the burn area and the combustion and convection air are controlled by on/off toggle switches.

On August 9, 2017, EPA approved an alternative test method request to allow Myren Consulting, Inc. to test the 509-1 Optimum using the test procedures of ASTM E2779 -10 "Standard Test Method for Determining Particulate Matter Emissions from Pellet Heaters" as required by Subpart AAA, with the burn rate category sequence in ASTM E2779 -10 - high, medium, and low - reversed to low, medium and high, as you believed this revised order would produce the required medium burn rate of less than or equal to fifty percent of the high burn rate defined in the ASTM E2779 -10.

In your August 12, 2017 letter, you explain that, despite use of the reversed burn sequence, the 509-1 Optimum was not able to achieve the required medium burn rate in the alloted 6- hour run time. You state the problem is that the firebox (firepot) in the 509-1 Optimum contains a lot of brick which is slow to either accumulate or release heat and this heat release rate affects the dry burn rate. In addition, the firebox (firepot) has fuel continuously burning inside it, much like a wood stove, and that burning fuel helps keep the bricks hot. This heat is necessary to maintain the temperature necessary for low particulate matter emission thermal incineration. You note that you now have a better understanding of how the heat transfer in the feed tube and firebox in the unit works and conclude that it will be difficult to impossible to produce the medium burn rate of less than or equal to fifty percent of the high burn rate within the 6 hour run time.

In your revised request, you ask that the medium burn rate for the 509-1 Optimum not be constrained to less than fifty percent of the high burn because the 509-1 Optimum is not a traditional pellet stove and cannot physically meet the ASTM E2779-10 defined medium burn rate. You also propose that 509 Fabrications, Inc. will conduct one additional integrated six-hour reverse burn rate category test and that both tests will be averaged to demonstrate compliance with the 2020 emission standard of 2.0 g/hr as outlined in Section 60.532(b) of Subpart AAA.

With the caveats listed below, we are approving your alternative method request for testing the 509-1 Optimum wood stove, as required in Subpart AAA, Section 60.534(d) to (1) continue to reverse the order of the burn rate categories tested to low, medium, and high and (2) to average the emission results of two six- hour integrated test runs. In addition, the medium burn rate will not be constrained to equal or less than fifty percent of the high burn rate category. This alternative test method approval is specific to the 509-1 Optimum appliance. In conducting this testing, the manufacturer or approved test lab must also measure the first hour of particulate matter emissions for each test run using a separate filter in one of the two parallel sampling trains. These results must be reported separately and also included in the total particulate matter emissions per run. As per Section 60.534(e) of Subpart AAA, the manufacturer must have the approved test laboratory measure the efficiency, heat output, and carbon monoxide emissions of the tested wood heater using Canadian Standards Administration (CSA) Method B415.1-10. For particulate matter emission concentrations, ASTM E2515-11 must be used.

The following changes to ASTM E2515-11 "Standard Test Method for Determination of Particulate Matter Emissions Collected by a Dilution Tunnel" may be followed:

- 1. Sample filters may be Pall TX-40 or equivalent Teflon-coated glass fiber, and 47 mm, 90 mm, or 100 mm in diameter.
- 2. Four inch filters are acceptable.

This approval letter must be included in your certification test report. If you have additional questions regarding these decisions, please contact Michael Toney of my staff at (919) 541-5247.

Sincerely,

Steffan M. Johnson, Group Leader Measurement Technology Group

cc: Michael Toney, EPA/AQAD (E143-02) Rafael Sanchez, EPA/OECA (2227A) Adam Baumgart-Getz, EPA/OID (C311M) David Cole, EPA/OID (C311M) Amanda Aldridge, EPA/OID (C311M) Dusty Henderson, 509 Fabrictions, Inc.

Alben T. Myren Jr <myren.ben@gmail.com>

509-1 Optimum alternative test method request dated August 16, 2017.

1 message

Toney, Mike <Toney.Mike@epa.gov>

Tue, Aug 22, 2017 at 9:10 AM

To: "Alben T. Myren Jr" <myren.ben@gmail.com>, Dusty Henderson <unlimitedpower59@yahoo.com> Cc: "Sanchez, Rafael" <Sanchez.Rafael@epa.gov>, "Baumgart-Getz, Adam" <Baumgart-Getz.Adam@epa.gov>, "Cole, David" <Cole.David@epa.gov>, "Aldridge, Amanda" <Aldridge.Amanda@epa.gov>, "Johnson, Steffan" <johnson.steffan@epa.gov>

Hi Ben,

I just sent your alternative test method approval for the August 12, 2017, request but wanted to add insight to your August 16, 2017 request. In your August 16, 2017 request you indicate two design changes that may be considered K-list changes, the damper/slide plate and the air tube feeding air to the feed tube. We cannot make a decision for this because this is Rafael's call. However, for the alternative test method request dated August 12, 2017 that we responded to on today August 22, 2017 is based on the data that was already collected prior to the recommended changes in the your August 16, 2017 request. In other words, the air setting plate and air tube feeding air to the feed tube must be the same as the original data set for you to conduct the additional six hour integrated test that will be averaged. We allowed the medium to be greater than the 50 percent of maximum in the approval, your option two.

If the manufacturer still wants to make the changes as noted in the August 16, 2017 test method request, this will be considered a new test and the August 22, 2017 approval for the August 12, 2017 request would be void. Let me know if you have any questions.

Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

Office: (509) 684-1154

Lab: (509) 685-9458

email:myren.ben@gmail.com

509 FAB Optimum Johnson 8.22.17 Memo

Date: 22 August 2017

1-

To: Stef Johnson, EPA/AQAD

CC: Mike Toney, EPA/AQAD; Rafael Sanchez, EPA/OECA; Adam Baumgart-Getz< EPA/OID, David Cole, EPA/OID; Amanda Aldridge, EPA/OID; Dusty Henderson, 509

From: Ben Myren

On 12 and 16 August 2017 Myren Consulting, Inc. (MCI) sent a memo to EPA (Johnson, EPA/AQAD) requesting revisions to the Alternative Test Method for Optimum wood heater that burns densified fuel logs that is manufactured by 509 Fabricators of Mead, WA. This memo builds upon the 12 and 16 August memos to EPA.

In the 12 August 2017 memo about the revised Alternative Test Method sent to EPA referenced above, no mention of any design changes was made because none were anticipated. Then, based upon some in-house testing, the manufacturer proposed in the 16 August memo to make two design changes which were described in detail in the 16 August memo and are/ were:

- 1. The damper plate (primary air control slider) will be modified.
- 2. The feed tube will have a small air inlet added to it as per the two DWGs DOO that were attached to the 16 August memo.

We are now in receipt of (1.) a letter from Stef Johnson dated 22 August 2017 which grants approval to do the reversed Low - Medium - High burn rate test sequence and waives the requirement that the Medium test segment have a dry burn rate (DBR) that is $\leq 50\%$ of the High burn test segment DBR and (2.) an email from Mike Toney that states that if the manufacturer still wishes to make these design changes, the approval contained in the 22 August letter is void.

The manufacturer understands the situation and so wishes to withdraw the request to make the modification to the primary air control slider plate. However, the manufacturer would still like to add the tube to deliver air to the top of the feed tube to prevent condensation. This tube is very small, 3/8" OD/ 1/4" ID, and has 3 right angle bends in it, with each right angle bend decreasing the air flow by 7-10%, so the amount of air that is being delivered to the feed tube is very small and that air is being pulled down the feed tube into the fire box by the combustion air fan, so basically the same amount of air will be entering the fire box/ combustion chamber, it is just apportioned slightly differently.

It is hoped that with just the one minor proposed design change outlined above, Option 2 proposed as the revised Alternative Test Method in my memo dated 12 August 2017 will still be acceptable, i.e., 509 will do one more integrated test run this time starting with the Low burn and ending with the High burn and then average the test results from the 2 runs and that EPA will continue to waive the requirement that the Medium test segment have a dry burn rate (DBR) that is $\leq 50\%$ of the High burn test segment DBR.

If this proposed option/ revision to the alternative test method is acceptable, let me know via email in the morning. I will check my email and, if need be, call you immediately. Look forward to your reply.

Sincerely,

Alben T. Myren Jr. President

Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

Office: (509) 684-1154 Lab: (509) 685-9458 email:myren.ben@gmail.com

509 FAB Optimum Johnson 8.22.17 Memo

Date: 23 August 2017

To: Stef Johnson, EPA/AQAD

CC: Mike Toney, EPA/AQAD; Rafael Sanchez, EPA/OECA; Adam Baumgart-Getz< EPA/OID, David Cole, EPA/OID; Amanda Aldridge, EPA/OID; Dusty Henderson, 509

From: Ben Myren

Re: ADDITIONAL INFORMATION IN SUPPORT OF GRANTING THE ALTERNATIVE TEST METHOD AND TESTING REQUIREMENTS PROPOSED IN THE 8.22.17 MEMO

On 22 August 2017 Myren Consulting, Inc. (MCI) sent a memo to EPA (Johnson, EPA/AQAD) requesting further revisions to the Alternative Test Method for Optimum wood heater that burns densified fuel logs that is manufactured by 509 Fabricators of Mead, WA. This memo is intended to provide additional information in support of EPA granting the alternative test method and testing requirements that were proposed in that 22 August memo.

In that memo 509 requested that it be allowed to add a small tube that would deliver a very small amount of combustion air to the top of the feed tube. To try to quantify what the amount of air might be that would be delivered to the feed tube via this small tube, Myren Consulting calculated the stack flow for the certification test done on 1.9.2017 and found that the average stack flow for the entire test was 13.287 dscfm. Thus the amount of air that would be delivered to the feed tube through a 0.25" ID tube that is roughly 3 feet long and has 3 ninety degree bends in it would be a very small percentage of that 13.287 dscfm, as was stated in the 22 August memo.

I hope this information helps with your deliberations. If you need any more information about this, feel free to call. I look forward to your reply.

Sincerely, Alben T. Myren Jr. President

	A	В	C T	D	F	F		
1		METHOD 5H	FLOW RA	TE (STAC	K) CALCU			П
2]	(put general	info in col B	. data info	in col G)	Billono		
3	Lab name:	MYREN CON	SULTING	, 	Vhc) 1=cet	2-nonest	•	
4	Stv manu:	509				2-nollet	3	
5	Model no:	OPTIMUM		-	Feet obra/li	J-penet.	24.0	
6	Test date:	1.9.2017		1	Nood main		31.2	
7	Run no:	EPA 1		1	Pup time	51 (%Wet):	5.63	
8	1	_,,,,		'Rurn roto		(min);	360	
9				Dunnate	(ory kg/nr)	j.	2.226515	
10	- Irun time	02	CO2	00	Eo	Cinal: Ca.		والمحجور بمرغد فلا تعاطر كالكالي بيد عند فلا
11	(min)	(%)	(%)	(%) (FU 1 1 12)	Slack Ga (de offe)		(1
12	1 o	10 /	10.89 /	(<i>™)</i> (0.11 €	1 00		(ascim)	(asm3/hr)
13	5	8 4	12 72 2	0.11	1.00	191.2220	13.28/04	22.59701
14	10	× ρ∩ ρ	11.63 /	0.43%	1.00			
15	15	9.00	10.01 /	0.43	1.00			
16	20	10.43 /	10.31/	0.11	1.00			
17	25	10.40 /	0.02 /	0.08	1.00	<u>.</u>	Average	_
18	30	11 12	9.92 /	0.08~	1.00	Stack Gas	Concentral	tions
10	35	10.12 4	9.77 /	0.1 4	1.00	(02)	(CO2)	(CO)
20	40	11 64	0.717	0.17	1.00	11.0774	9.658767	0.403151
21	40	11.04	9.24	0.12 4	1.00			
22	40	12.02	9/	0.2	1.00			
22	55	13.93	6.83 /	0.36 ×	0.99			
24		13.73	6.93 /	0.55 /	, 1.00			
24	60	14.39	6.06	0.98 *	0.99		PROPRIET	ARY
20	70	6.39*	14.17	0.87	0.99		DATA	
20	70	8.24	12.67	0.06	1.00			
21	75	9.51	11.41	0.05	1.00			
20	80	10.04 /	10.74	0.33	1.00			[
28	85	11.28	9.62	0.08	1.00			-
30	90	11.32	9.57 🖉	0.1	1.00			
	95	10.98 /	9.92 🖉	0.08	1.00			
	100	9.02 /	11.85 🖉	0.13 🗸	1.00			
33	105	9.49 /	11.36 🖌	0.18 🎸	1.00			
34	110	9.95 /	10.94 🖉	0.1 /	1.00			
35	115	11.12 /	9.77 🥖	0.11	1.00			
36	120	10.45	10.41 🧹	0.16 🐔	1.00			
3/	125	9.44	10.98 🖌	1.034	1.00			
38	130	9.72 🖉	11.11 🖌	0.22 🖉	1.00			1
39	135	6.82 🖉	13.69 🖌	0.85 /	1.00			
40	140	7.79 🖉	12.72 🗸	0.86 🌌	1.00			
41	145	9.9 #	10.91 🖉	0.25/	1.00			
42	150	8.34 🗸	12	1.2 🗸	1.00			
43	155	10.08 🖌	10.74 /	0.25≇	1.00			
44	160	10.19 /	10.46 🗸	0.57 🖉	1.00			ł
45	165	10.69 /	10.19 🖊	0.12 /	1.00			I
46	170	10.77 🎣	10.11 /	0.11	1.00			
47	175	12.85 /	8.03 🖉	0.13 [/]	0.99			
48	180	15 🖉	5.86	0.15 <i>I</i>	0.99			
49	185	13.57 🏹	7.23 🎽	0.28 🍬	0.99			
50	190	11.11 🖉	9.77	0.12	1.00			
51	195	13.07	7.73 🖌	0.28 /	1.00			

Ł

509 EPA 1 STKFL 1.9.2017

	A	В	C	D	E	F	G	Н
52	200	16.14	4.52	0.56	0.99			
53	205	9.38 *	ໍ ຼ 11.21	a 0.71	1.00			
54	210	8.76	<i>*</i> 11.76	🥙 0.85	1.00			
55	215	9.06	🦿 11.33	/ 1.1	1.00			
56	220	7.59 1	12.18	🐔 2.34	1.00			
57	225	6.61 -	° 13.12	<i>•</i> 2.42	1.00			
58	230	9.5	/ 10.84	1.2	1.00			
59	235	10.23	10.66	0.1	1.00			
60	240	7.77 4	12.35	1.64	1.00			
61	245	8.54 🖉	[°] 12.3-	<i>٥.2</i>	1.00			
62	250	9.93 -	10.86	ø 0.29,	/ 1.00			
63	255	12.02 🗸	8.87#	^م 0.1	1.00			
64	260	12.36 🐔	8 .52 ·	0.12	<i>•</i> 1.00			
65	265	13.01 🗸	7.85	0.15	<i>*</i> 1.00			ľ
66	270	13.4 🖌	7.46	0.16	<i>•</i> 0.99			
67	275	13.89 🗸	6.96 /	0.19	^e 0.99			
68	280	14.38 🖌	6.46 4	0.19	0.99			
69	285	13.16 🖊	7.68	0.21	⁶ 0.99			
70	290	13.77 🗸	, 7.06¢	, 0.22 °	0.99			
71	295	10.41 🖊	໌ ₂ 10.31 ⁴	0.43	1.00			
72	300	11.33 🐔	9.52	0.19	1.00			1
73	305	13.22 🗸	j 7.53 ∕	0.38 -	° 0.99			
74	310	14.9 🖍	5.74 °	0.59	<i>م</i> 0.99			
75	315	11.34 🗸	9.49 -	″ 0.22 ["]	1.00			
76	320	12.68 🗸	8 .13 ⁄	⁶ 0.26 '	1.00			
77	325	10.74 🦯	10.02 🗸	0.37 /	1.00			
78	330	11.38 🖊	9.2	້ 0.73 ູ	1.00			ľ
79	335	10.52 🎤	10.26 🐔	0.31 ^	1.00			1
80	340	10.9 🗸	9.97 🗸	0.14 -	⁷ 1.00			
81	345	13.13 🖍	7.75 ∕	0.11	1.00			
82	350	14.33 🖌	6.36 🖉	⁶ 0.14 (1.02			
83	355	15.33 🗸	5.52/	/ 0.18	0.99			
84	360	16.55 🖊	4.27 🗸	0.23 ^	0.99			

Alben T. Myren Jr <myren.ben@gmail.com>

Additional info in support of alternative test method and testing requirements for the 509 OPTIMUM

6 messages

Alben T. Myren Jr <myren.ben@gmail.com>

Wed, Aug 23, 2017 at 12:53 PM To: Steffan Johnson <johnson.steffan@epa.gov>, "Toney, Mike" <toney.mike@epa.gov>, "Baumgart-Getz, Adam" <Baumgart-Getz.Adam@epa.gov>, "Sanchez, Rafael" <sanchez.rafael@epa.gov>, WoodHeaterReports <WoodHeaterReports@epa.gov>, "Aldridge, Amanda" <Aldridge.Amanda@epa.gov>, David Cole <Cole.David@epamail.epa.gov>, Dusty Hendersen <dusty@509fab.com>

See attached. Ben

Johnson EPA 509 letter 8.23.17.doc œ٦) 34K

Dusty Henderson <dusty@509fab.com> To: "Alben T. Myren Jr" <myren.ben@gmail.com>

Got it. Thanks. They must be close? To decision time that is.

On Aug 23, 2017 12:53 PM, "Alben T. Myren Jr" <myren.ben@gmail.com> wrote: See attached. Ben

Alben T. Myren Jr <myren.ben@gmail.com> To: Dusty Henderson <dusty@509fab.com>

Wed, Aug 23, 2017 at 1:17 PM

Wed, Aug 23, 2017 at 7:37 PM

Let's hope. Ben [Quoted text hidden]

Toney, Mike <Toney.Mike@epa.gov>

Thu, Aug 24, 2017 at 4:29 AM To: "Alben T. Myren Jr" <myren.ben@gmail.com>, "Johnson, Steffan" <johnson.steffan@epa.gov>, "Baumgart-Getz, Adam" <Baumgart-Getz.Adam@epa.gov>, "Sanchez, Rafael" <Sanchez.Rafael@epa.gov>, WoodHeaterReports </woodHeaterReports@epa.gov>, "Aldridge, Amanda" <Aldridge.Amanda@epa.gov>, "Cole, David" <Cole.David@epa.gov>, Dusty Hendersen <dusty@509fab.com>

Hi Rafael.

Myren Consulting sent additional letters dated August 22, 2017 and August 23, 2017. The August 22, letter states that the manufacturer will leave the primary air control as originally designed but wanted to add additional small air holes in the fuel feeding tube area. This holes will help reduce the moisture in the feeding system. The August 23, 2017 letter gives additional information regarding the feed tube air. Please make a ruling so Myren consulting can make a decision moving forward. Thanks Rafael.

From: Alben T. Myren Jr [mailto:myren.ben@gmail.com] Sent: Wednesday, August 23, 2017 3:53 PM To: Johnson, Steffan <johnson.steffan@epa.gov>; Toney, Mike <Toney.Mike@epa.gov>; Baumgart-Getz, Adam <Baumgart-Getz.Adam@epa.gov>; Sanchez, Rafael <Sanchez.Rafael@epa.gov>; WoodHeaterReports

Gmail - Additional info in support of alternative test method and testing requirements for the 509 OPTIMUM

</woodHeaterReports@epa.gov>; Aldridge, Amanda <Aldridge.Amanda@epa.gov>; Cole, David <Cole.David@epa.gov>; Dusty Hendersen <dusty@509fab.com> Subject: Additional info in support of alternative test method and testing requirements for the 509 OPTIMUM

See attached, Ben

Dusty Henderson <dusty@509fab.com> To: "Toney, Mike" < Toney. Mike@epa.gov> Cc: "Alben T. Myren Jr" <myren.ben@gmail.com>

Thu, Aug 24, 2017 at 6:36 AM

Mike

It is actually just one hole in the tube not holes so we don't confuse anyone about the very very small amount of air that will enter the feed tube at the top. Dusty [Quoted text hidden]

Sanchez, Rafael <Sanchez.Rafael@epa.gov> Wed, Aug 30, 2017 at 1:45 PM To: "Alben T. Myren Jr" <myren.ben@gmail.com> Cc: "Dusty Henderson (unlimitedpower59@yahoo.com)" <unlimitedpower59@yahoo.com>, "Toney, Mike" <Toney.Mike@epa.gov>

Ben,

This is in reference to your August 22 and 23, 2017 letters to the EPA regarding certain modifications to the 509 Optimum wood heater. Specifically, you requested that modifications to the heater be allowed to add a small tube that would deliver a very small amount of combustion air to the top of the feed tube. The EPA is granting your request in accordance to the August 10, 2017 email to Ben Myren Consulting granting permission and describing the steps required to unseal the 509 Optimum wood heater. In the August 10, 2017 email, the EPA requested, among other requirements, that the following steps be followed:

> Once the wood heater is unsealed, the test laboratory may make modifications to the heater and/or begin a new test series. Any changes made by the test laboratory to the heater (along with engineering drawings) must be documented and submitted to the EPA.

All results of the new test series along with a complete test report must be submitted to the EPA.

Upon completion of the new test series, the wood heater must be re-sealed with a lab-specific seal in accordance with the 2015 Standards. (60.535(a)(2)(vii)).

If you have any questions, please let me know.

Rafael Sanchez, Ph.D.

Wood Heater Program Lead

Air Branch

Monitoring, Assistance, and Media Programs Division

Office of Compliance

U.S. Environmental Protection Agency (EPA)

Room 7149-D

1200 Pennsylvania Ave., NW

MS:2227A

Washington, DC 20460

202-564-7028

202-564-0050 fax

Please make a note of the new inbox for wood heater certification requests: WoodHeaterReports@epa.gov

If you have a wood heater question, please visit the USEPA Wood Heater Compliance Monitoring Program website at http://www2.epa.gov/compliance/wood-heater-compliance-monitoring-program. On that web page, you will find information about the EPA wood heater compliance program including the List of EPA Certified Wood Heaters.

This message may contain sensitive and/or privileged information. If you believe you have received this e-mail in error, please notify me and delete the e-mail immediately.

From: Alben T. Myren Jr [mailto:myren.ben@gmail.com]

Sent: Wednesday, August 23, 2017 3:53 PM

To: Johnson, Steffan <johnson.steffan@epa.gov>; Toney, Mike <Toney.Mike@epa.gov>; Baumgart-Getz, Adam <Baumgart-Getz.Adam@epa.gov>; Sanchez, Rafael <Sanchez.Rafael@epa.gov>; WoodHeaterReports <WoodHeaterReports@epa.gov>; Aldridge, Amanda <Aldridge.Amanda@epa.gov>; Cole, David <Cole.David@epa.gov>; Dusty Hendersen <dusty@509fab.com>

Subject: Additional info in support of alternative test method and testing requirements for the 509 OPTIMUM

See attached. Ben

Myren Consulting, Inc.

512 Williams Lake Road

Colville, WA 99114

Office: (509) 684-1154 Lab: (509) 685-9458

email:myren.ben@gmail.com

509 FAB Optimum Johnson 8.22.17 Memo

Date: 30 August 2017

To: Rafael Sanchez, EPA/OECA

CC: Mike Toney, EPA/AQAD; Stef Johnson, EPA/ AQAD; Adam Baumgart-Getz, EPA/OID, David Cole, EPA/OID; Amanda Aldridge, EPA/OID; Dusty Henderson, 509

From: Ben Myren

RE: CLARIFICATION OF YOUR EMAIL DATED 30 AUGUST 2017 ABOUT THE 509 OPTIMUM WOOD HEATER

Myren Consulting, Inc. (MCI) has sent a series of memos to EPA (Johnson, EPA/AQAD) and you requesting revisions to the Alternative Test Method for Optimum wood heater that burns densified fuel logs that is manufactured by 509 Fabricators of Mead, WA. This memo seeks to clarify the approval that was granted in your email dated 30 August 2017.

Specifically, in my memo dated 22 August 2017 sent to EPA about a revision to the Alternative Test Method, 509 asked that it be allowed to make just one minor design change to the unit, that being the addition of one small bleed 4" hole in the feed tube that would delivery a very small amount of air to the feed tube to keep the fuel logs from sticking in the feed tube due to condensation. You granted that request in your email dated 30 August 2017. However, left unanswered is the question in my 12 August memo that was referred to in the second paragraph on page 2 of my memo dated 22 August 2017 which asked if just one additional integrated test run would be required if EPA were to grant approval for the minor design change discussed above. Specifically, the manufacturer is proposing to:

- 1. Unseal the stove
- 2. Make the design change and add the feed tube and hole for delivering bleed air to the feed tube.
- 3. Conduct one additional "reversed" integrated 6 hour test starting with a one hour preburn on Low, followed by a 3 hour test segment on Low, then a 2 hour test segment on Medium and then a one hour test segment on High. A

filter set will be changed in one of the trains at 60 minutes. PM sampling will begin at the start of the 3 hour Low burn test segment and continue until the end of the 60 minute High burn test segment.

- 4. Pall TX-40 TFE coated 4" filters will be used.
- 5. The PM data from this "reversed" integrated test will be averaged with the PM test data from the first "normal" integrated test (1.89 g/h) to calculate an average emission rate for the OPTIMUM and that average emission rate will be used to determine compliance with EPA's 2020 standard of 2.0 g/h. All other data that is required to be reported to EPA will be handled in the same way. e.g., the reported CO g/h will be the average of the test results from the 2 runs.
- 6. All of the test data from both test runs will be included in a complete test report sent to EPA. The test report will document the design change with photos and engineering drawings.
- 7. The test stove will be resealed immediately after the additional test run.

So is the above proposed course of action is acceptable to EPA? Y/N? Let us know via email.

I have turned in a 30 day notification for the OPTIMUM for next week on 7/14/2017, so if the above course of action is approved, the unit will be tested next week on Tuesday or Wednesday. We will both check our emails and, if need be, we can call you immediately. Look forward to your reply. And Thank You! in advance for your reply - and have a great Labor Day weekend!

Sincerely,

Alben T. Myren Jr. President

The Optimum Wood Heater

5 messages

Alben T. Myren Jr <myren.ben@gmail.com>

Thu, Aug 31, 2017 at 4:08 PM To: "Sanchez, Rafael" <sanchez.rafael@epa.gov>, WoodHeaterReports <WoodHeaterReports@epa.gov>, Steffan Johnson <johnson.steffan@epa.gov>, "Toney, Mike" <toney.mike@epa.gov>, "Baumgart-Getz, Adam" <Baumgart-Getz.Adam@epa.gov>, "Aldridge, Amanda" <Aldridge.Amanda@epa.gov>, David Cole <Cole.David@epamail.epa.gov>, Dusty Hendersen <dusty@509fab.com>

Rafael.

We are in receipt of your email dated 30 August 2017 and just to insure that we have all of our "i's" dotted and "T's" crossed, I am sending this last memo to insure we all agree about what is going to take place as 509 moves forward and we do the one additional test run on the OPTIMUM. As the memo states, if you agree, then we will do the test on Tuesday or Wednesday of next week...

Regards,

Ben Myren

SANCHEZ 509 letter 8.30.17.doc œ٦) 38K

Dusty Henderson <dusty@509fab.com> To: "Alben T. Myren Jr" <myren.ben@gmail.com>

Ben

I got an email from Rafael stating that it is Mikes call on the testing. Is that the email you are referring to? D

[Quoted text hidden]

Thanks,

Dusty Henderson, President. 509 Fabrications, Inc.

Alben T. Myren Jr <myren.ben@gmail.com> To: Dusty Henderson <dusty@509fab.com>

Dusty, At this point I am not certain what email applies any more. The lines seems to blur continuously. OK so if it Mike's call I will send him an email stating such and see if we can get an answer form somebody. Ben [Quoted text hidden]

Toney, Mike <Toney.Mike@epa.gov>

Fri, Sep 1, 2017 at 6:29 AM To: "Alben T. Myren Jr" <myren.ben@gmail.com>, "Sanchez, Rafael" <Sanchez.Rafael@epa.gov>, WoodHeaterReports <WoodHeaterReports@epa.gov>, "Johnson, Steffan" <johnson.steffan@epa.gov>, "Baumgart-Getz, Adam" <Baumgart-Getz.Adam@epa.gov>, "Aldridge, Amanda" <Aldridge.Amanda@epa.gov>, "Cole, David" <Cole.David@epa.gov>, Dusty Hendersen <dusty@509fab.com>

Hi Ben,

We are all on one page. I needed Rafael to give you permission to unseal the stove. At one time 509 Fabricators was planning on changing the primary air control in addition to the small hole in the fuel feeding tube to prevent moisture

Thu, Aug 31, 2017 at 4:14 PM

Thu, Aug 31, 2017 at 8:39 PM

THE OPTIMUM

1 message

Alben T. Myren Jr <myren.ben@gmail.com>

Thu, Aug 31, 2017 at 8:47 PM To: "Toney, Mike" <toney.mike@epa.gov>, Steffan Johnson <johnson.steffan@epa.gov>, "Baumgart-Getz, Adam" <Baumgart-Getz.Adam@epa.gov>, "Sanchez, Rafael" <sanchez.rafael@epa.gov>, WoodHeaterReports <WoodHeaterReports@epa.gov>, "Aldridge, Amanda" <Aldridge.Amanda@epa.gov>, David Cole <Cole.David@epamail.epa.gov>, Dusty Hendersen <dusty@509fab.com>

Mike, Rafael says it is your call on the testing that was proposed in my memo dated and reiterated in the memo I sent yesterday (8/30/2017). Starting on the bottom of page 1 of my 8/30/17 memo I outline a proposed course of action that includes all of the requirements that have been set forth in both Rafael's and Stef's letters and emails. All we need is an OK to proceed. Thanks in Advance and have a great weekend with your family.

Regards,

Ben Myren

build up. Since 509 changed their mind and will not be changing the air control and that it will be the same we are on one page. The small air hole in the fuel feeding tube should not be a problem. You should be good to go for your testing on Tuesday or Wednesday next week. Have a good week end.

From: Alben T. Myren Jr [mailto:myren.ben@gmail.com] Sent: Thursday, August 31, 2017 7:09 PM To: Sanchez, Rafael <Sanchez.Rafael@epa.gov>; WoodHeaterReports <WoodHeaterReports@epa.gov>; Johnson, Steffan <johnson.steffan@epa.gov>; Toney, Mike <Toney.Mike@epa.gov>; Baumgart-Getz, Adam <Baumgart-Getz.Adam@epa.gov>; Aldridge, Amanda <Aldridge.Amanda@epa.gov>; Cole, David <Cole.David@epa.gov>; Dusty Hendersen <dusty@509fab.com> Subject: The Optimum Wood Heater

[Quoted text hidden]

Alben T. Myren Jr <myren.ben@gmail.com> To: "Toney, Mike" <Toney.Mike@epa.gov>, Dusty Hendersen <dusty@509fab.com>

Fri, Sep 1, 2017 at 7:53 AM

Mike, Thank you!!!! From both Dusty and I. And have a great weekend with the wife and kids. They aren't kids anymore if I am doing my math right, but rather young ladies who are off to college and perhaps even beyond that. How time flies. Ben

[Quoted text hidden]

N Ч О Р.1 UNIT:509 OPTIMUM Densified Fuel Log Stove WOOD BURNING HEATERS

Test Method 28R for Certification and Auditing of Wood Heaters

SUMMARY RESULTS-DENSIFIED FUEL LOG HEATERS

# Run	Date	Setting	Dry Burn Rate (kg/h)	Run Time ¹ (minutes)	Heat Output Btu/h	PM Emiss 1 st h	sions (g/h) Int. Avg.	CO Emissions (g/h) Segment Int. Avg.	%OE(%)(B415)(HHV) Segment Int. Avg.
H	1.9.17	High	2.319	60	33,114	1.503		70.51	78.3
2	9.5.17	High	1.976	60	27.834			117.98	77.2
1	1.9.17	Medium	2.899	120	42,099			96.32	79.6
3	9.5.17	Medium	1.546	120	22,368			102.21	79.3
н	1.9.17	LOW	1.761	180	25,198			104.79	79.5
N	9.5.17	LOW	1.045	180	14,856	1.542		85.39	77.9
Inte	grated A	verages:							
н	1.9.17		2.226	360	32,183		1.890	94.68	79.0
N	9.5.17		1.367	360	19,573		1.104	95.10	78.5

segment was which was started with a full feed tube was 2.899 kg/h. Even though the Frimary Air Control (PAC) setting end of a log to disintegrate into smaller pieces, i.e., the more weight, the faster the disintegration, which allows more unburnt fuel to drop into the combustion chamber. The DBR data for EPA test 1 reflects this operating scenario. Note: (1.) There is no test run in Dry Burn Rate (BDR) Categories 1 (<0.80 kg/h) because the unit's dry burn rate is minute "High" burn segment was 2.319 kg/h with a partially full feed tube. The DBR for the 120 minute "Medium" burn controlled by its primary air control and combustion air fan, the density and size of the fuel logs themselves, the end of the "High" burn segment there was enough room in the feed tube to add 2 logs (15.2 lbs.). The DBR for the 60 That clearly shows how the amount of fuel in the feed tube can impact the DBR and that the amount of primary air being pulled through the unit really does not impact the logs are gravity fed and logs can "warp" and hang up in the feed tube which slows the DBR. The weight of the logs left in the feed tube affects the feed rate because the weight pressing down from above is what causes the burning When the "High" burn test segment was started, the unit had been burning for a little over 75 minutes (~15 minutes for ignition and 60 minutes for Preburn). A fuel log was added at approximately 5 minutes into preburn, so at the The The unit burned 13.5 lbs. in the 120 minute "Medium" burn test segment. At the end of the Medium amount of fuel remaining in the feed tube at any given time and how the fuel logs "settle" in the feed tube. burn segment, the PAC was adjusted to the Low burn setting and 1 fuel log (8 lbs.) was added at 20 minutes had been reduced to the "Medium" setting, the DBR increased. DBR very much.

2 Ч Р.2 UNIT:509 OPTIMUM Densified Fuel Log Stove WOOD BURNING HEATERS

increased, but the increase in the burn rate was not as great as when 2 logs were added, again showing how the amount down to 0.1 lb./ 5 minutes and we were worried that the fire might go out. Again, as soon as fuel was added the DBR slowed as the amount of fuel in the feed tube decreased. (See Data Sheet #14, pages 4 of 7 and 5 of 7.in the first The wild swings in combustion gas (CO2, O2 and CO) concentrations also confirms that the amount of fuel in the feed tube is The DBR immediately increased due to the extra weight in the feed tube and then test run.) Additional fuel (3.4 lbs, approximately ½ a log, was added at 312 minutes because the DBR had dropped what primarily controls how this stove performs. See Data Sheet #14, p4 of 7, at 205 and 210 minutes in the first test run and look at the DBR and CO2 and CO concentrations. At 205 minutes the DBR was 0.1 1b and the CO2 and CO When fuel is added the CO2 concentration doesn't change much. of fuel in the feed tube impacts the burn rate. (See Data Sheet #14, page 6 of 7 in the first test run.) concentrations were 11.21 and 0.71% respectively. At 210 minutes the DBR was 0.6 lbs. and the CO2 and CO concentrations were 11.76 and 0.85% respectively. into the "Low" burn test segment.

minute preburn on high, 60 minute High burn test segment, 120 minute Medium burn test segment and a 180 minute Low burn test segment. The data for test run # 2 is from a test with a "reversed" burn rate sequence - 60 minute preburn on Low, 180 minute Low burn test segment, 120 minute Medium burn test segment and a 60 minute High burn test segment. The difference in burn rates for each test segment is primarily due to two things: (1.) the temperature profile of The data for Test Run #1 is from a test where the burn rate sequence followed what is in ASTM E2779-10 - 60 the unit was substantially different and (2.) the fueling scenario was different.

The data shows that no mater how a consumer might operate the stove, its emissions performance should be below 2.0 g/h and the overall efficiency should be about 78.5% (HHV), i.e., it is very consistent. Also note that the integrated average %OE's (HHV) were within 0.5% of each other.

T TO T		% DIFF 4.50	5.57	UTE ONS	ssions	03	42	was Càuse
09 OPT P. 1	MANCE	Avg. <u>g/h.</u> 1.890	1.104	50 MINI Emissi	H H	н. 5	1.5). EPA 2 n rate be ires that
ى ا	PERFOR	MISSIONS g/h) 1.805	1.042	N 1 0-0	DBR CATC	312 5.7	284 6.1	tigh to low 111 dry bur Mer0. Mm forest f
	TRAIN	AVG. % F PROP 99.966	100.026	TRAI DBR a	Run # ()	ÉPA 1 2.	EPA 2 1.	2779-10 (F 1 the overs serent (coc 1 smoke fro
	MPL.ING	SAMPLE SAMPLE VOL (dscf) 172.942	168.486]					l in ASTM e ts impacted quite diff of the wood
	ONS SA	SAMPLE RATE (cfm) .526	.508		NOI			e specifiec high). Thi e test was s because o ction.
·	ISSIM	S CATCH (mg) 39.6	25.4	ANCE	NCENTRA1			sequence low to 1 e of the Run 2 is tion Sec
	ATE EI	EMISSIONS (g/h) 1.975	1.165	AIR RFORM	NT PM CON (mg/dscf)	0.010305	0.024235	urn rate s squence (1 the course tred for I introduct
	RTICUL	AVG. % PROP 99.973	99.977	BIENT Ain Pe	AMBIE			rd dry bu n rate se during t ion repor s in the s in the
	515 PAI	SAMPLE VOL (dscf) 173.086	170.780	515 AM NG TR	AMPLE 'OL. (dscf)	174.665	160.927	the standa 1" dry bur e profile concentrat See photo See photo
	TH E2	SAMPLE RATE (cfm) .539	.511	STM E25 SAMPLI	SAMPLE SAMPLE	0.5245	0.4983	un using t "reversec temperatuu bient PM c he area.
	OF AS	CATCH (mg) 1 43.2	28.3	OF AS LANK)	(mg) R	1.8	о. Ю	A 1 was r n using a e unit's : e high am inketed tl
	JMMARY	N DBR <u>A 1 2.226</u>	A 2 1.367	JMMARY ROOM B	#	A 1	A 2	TES: (1.) EP Tur (2.) The (2.) bla
	SI	RU #10 10	ЕР	IS SI	-	ЕP	а Э	Ö

۱.

509 OPTIMUM DENSIFIED FUEL LOG STOVE AVERAGE TEST RESULTS

The average test results listed below are the average of the test results from the two certification test runs done on the OPTIMUM. These averages are different from weighted averages which are based upon the probability factors listed in EPA M28/ M28R, Table 1 and the calculation procedures shown in M28/ M28R Figure 28-5. These averages are based on the test data generated by the test method itself (ASTM E2779) which requires that a pellet/ densified fuel log heater be operated at three different settings, each for a specific period of time, i.e., 1 h on High, 2 h on Medium and 3 h on Low. Because of the way the OPTIMUM operates, a second test run was done, this time with the burn rate sequence reversed, i.e., 3 h on Low, 2 h on Medium and 1 h on High, to demonstrate that while the unit was incapable of achieving a medium burn rate (kg/h) that was <50% of the high burn rate (kg/h)because of the slow way in which the unit responds to a change in the air control setting, the unit still performed well. The averages reported below for each parameter are the average of the integrated average from each test run for that parameter.

Example: The integrated average PM emission rate 1.805 g/h for test run 1 and 1.104 g/h for test run 2. The average of these two integrated averages is 1.497 g/h.

The average particulate matter (PM) emission rate (g/h) is

1.497 g/h.

The average particulate matter (PM) emissions (lbs./ MM Btu output) is

0.125 lb./MM Btu output

The average overall HHV efficiency (%OE HHV) is

78.5%.

The average overall LHV efficiency (%OE LHV) for the is

85.3%.

The average CO emissions (g/h) is

setters ,

94.89 g/h

The average CO emissions (g/ kg dry fuel) is

56.14 g/ dry kg of fuel

Unit: Opfimu m

AGING DATA

The Optimum Densified Fuel Log stove was aged by Myren Consulting, Inc. The Aging installation configuration was the same as the installation used during certification testing. During Aging the stove was run on the Medium setting used during certification testing and the temperature and the (wet) burn rate data were collected using a Data Acquisition System (DAS). The Aging data was then transferred from the DAS spreadsheet to the Aging data pages in this section. The dry burn rate (DBR) varies during the aging process because the densified fuel logs sometimes warp (bend) and then stick in the feed tube, slowing the DBR. When the log(s) finally drop, the DBR will speed up for a while.

There is no Aging data in this addendum to the original test report because the Aging data was included in the original test report.

Analytical Report

Ben Myren

TIMBER PRODUCTS INSPECTION

E96-9191

Ż

MYREN CONSULTING INC

512 Williams Lake Road Colville, WA 99114

TP ID Number: Product Recognized As: Sample Designation: Sample Date:	DBL150422-2 Ground Biomass Energy Log Compos 10/30/2015	ite	Sample Welght (lbs): Sample Received: Report Date: Purchase Order:	0.54 11/5/2015 11/10/2015	
Parameter	······································	As-Received	Dry Basis	Analytical Method	ISO 17025
Total Moisture (%)		8.03		ASTM E871	Q
Ash (%)		0.38	0.41	ASTM D1102	Q
GCV (BTU/lb)		8046	8749	ASTM E711	Q
Carbon (%)		46.73	50.81	CEN/EN 15104	Q
Hvdrogen (%)	•	6.34	6,90	CEN/EN 15104	Q
Nitrogen (%)		0.15	0.16	CEN/EN 15104	Q
Sulfur (%)		0.01	0.01	CEN/EN 15104	Q
Oxygen (%)	· ·	38.36	41.71	CEN/EN 15104	Q

Company Contact:

1

V2 - Added Calorific Value

Prepared By:

Christopher Cox - Assistant Laboratory Manager

Findings are based on the sample submitted. TP Inspection is accredited by ALSC for the PFI/ALSC Densified fuel Standards Program. TP Inspection is accredited by the International Accreditation Service to ISO 17025. Specific test procedures included in TP Inspection's scope of accreditation are identified with a "Q". Test parameters performed by our sister laboratory, Technical Laboratory Rotterdam (TLR) are designated with an "S". TLR is an ISO 17025, accredited laboratory by the Dutch Accreditation Council RvA. Other outsourced parameters are designated with an "O".

MYREN CONSULTING, INC

Manufacturer:	509 FAB	Technicians:	ATMYREN	
Model:	OPTIMUM			
Date:	9.5.17			
Run:	EPA 2			
Control #:				
Test Duration:	360			
Output Category:	VARIABLE			

Test Results in Accordance with CSA B415.1-09

	HHV Basis	LHV Basis
Overall Efficiency	78.5%	85.0%
Combustion Efficiency	95.3%	95.3%
Heat Transfer Efficiency	82%	89.2%

Output Rate (kJ/h)	20,634	19,573	(Btu/h)
Burn Rate (kg/h)	1.36	3.00	(lb/h)
Input (kJ/h)	26,295	24,944	(Btu/h)

Test Load Weight (dry kg)	8.18	18.03	dry lb
MC wet (%)	5.613		
MC dry (%)	5.95		
Particulate (g)	6.6221		
CO (g)	571		
Test Duration (h)	6.00		

Émissions	Particulate	co
g/MJ Output	0.05	4.61
g/kg Dry Fuel	0.81	69.76
g/h	1.10	95.10
Ib/MM Btu Output	0.12	10.71

Air/Fuel Ratio (A/F) 17.98

VERSION:

2.2

12/14/2009

Cat, Pe	NH																																																			
(Cat, Non-	(For C) (kgor b)		kulikg	70.14	Room Temp	66.0	66.0 66.0	65.0 200	66.0	66.D	67.0	67.0 67.0	67.0	68.0	68.0 68.0	68.0	68.0 68.0	68.0	69.0	70.0	69.0	70.0	70.0	0.09	69.0	71.0	70.0	70.0	20.02	20.02	102	70.0	74.0	21.0	72.0	71.0	10	72	72	22	22	22	72	22	ž	22	2	4	22	212	74	75
NON CAT	њ	Data D. Fir	19,288 50.81 6.9 41.88 0.41	210.75	Temp File Gas	183.0	185.0	186.0	190.0	191.0	194.0	196.0	197.0	199.0	200.0	202.0	203.0	203.0	201.0	200.0	200.0	193.0	191.0	185.0	181.0	175.0	175.0	0.071	170.0	171.0	187.0	189.0	193.0	200.0	204.0	204.0	208.0	213	217	525	228	82	8 2 2	83 83	246	262	368	272	282	288	87. 75.	295
lace Type:	sinp. Lintts Aght Units	Fuel	HHV %C %C %C %C %C %C %C %C %C %C %C %C %C	14.35	ion (%) 20	14.23	14.05	13.75	13.92	13.81	14,87	14,56	14,85	13.69	13.19	14.50	12.13	15.21	15.39	16.60	16.38	17.61	17.05	17.43	17 93	120 11	18.07	14.45	14.70	14.15	14 19	14.15	13.90	15.06	15,48	15.15	13.03	11.725	11.405[12.4	14.1	14.92	14.075	14.565	13.015	12,165	13.33	11.625	10.725	13.095	14.6551	12.325
Applia	Ϋ́			6.38	Composit CO ₂	6.61	6.93	7.08	6,83	7.03	5.86	6.18 6.16	5.96	90.7	7.39	6.33	6.01 6.01	5.58	4.40	4.18	0.40	3.63	3.38	3.03	2.57	3.10	2.52	6,28	6.06	6.16	6.63	6.63	6.88	285	523	5.58	776	8.99	9.21 9.09	92.8	6.71	5.88	6.68	6.21 7.81	7.71	8.64	7.36	9.19	9.94	7,611	6.11 9.44	8.49
2/14/2009			5.61 19.10 1.36 6.6221 g	0.42	Flue Gas CO	0.20	0.27	0.23	BE.0	0.20	0.43	0.24	95.0	0.30	0.72	0.22	0.33	0.31	1.31	0.33	0.42	0.60	27.0	0.97	0.89	0.81	0.70	0.41	0.36	0.40	0.44	0.00	0.33	0.50	0.47	0.42	0.31	0.45	0.65	0.56	0.26	0.28	0.37	0.33	0.43	0.3	0.5	0.25	0.55	0.47	0.29	0.25
22 409 FAB	5.17 5.17 EPA 2	360 VARIABLE	Kolsture (% wet): Welght (lb wet): a Rate (dry kg/h): ulate Emissions:	Averages	Fuel Weight Remaining (Ib)	19.10 16 30	18.70	18.40	17.80	17.50	16.90	16.80	1620	15.80	15.50	15.00	14.20	14.10	13.75	13.60	13.20	13.10	12.95	12.90	12.80	12.601	12.50	12,00	11.80	11.80	11.20	10.60	10.40	06.6	07-6	9.00	09'8 6 1 0	7.70	7.40	6.60	6.00	5.70	5.30	4.90	4.40	3.70	3.30	2.40	2.00	1.20	0.40	0.00
vepaton: Manur	Kun: Control #:	Test Duration: Output Category:	Wood Loak Bun Total Partic		Elapsed Time (mh)	0	10	15	25	35	40	50	35	8	75	08	06	36	105	110	120	125	135	140	145	3	160	170	175	180	130,	200	205	215	225	235	240	250	255	265	275	280]	290	300	305	315	320	330	3351	345	355	360

Æ.

.

-

MYREN CONSULTING, INC

Manufacturer:	509 FAB	
Model:	OPTIMUM	
Date:	9.5.17	
Run:	EPA 2	
Control #:		
Test Duration:	60	
Output Category:	HIGH	

Technicians: ATMYREN

Test Results in Accordance with CSA B415.1-09

	HHV Basis	LHV Basis
Overall Efficiency	77.2%	83.7%
Combustion Efficiency	95.9%	95.9%
Heat Transfer Efficiency	81%	87.3%

Output Rate (kJ/h)	29,342	27,834	(Btu/h)
Burn Rate (kg/h)	1.97	4.34	(lb/h)
Input (kJ/h)	37,997	36,044	(Btu/h)

Test Load Weight (dry kg)	1.97	4.34	dry lb
MC wet (%)	5.613		
MC dry (%)	5.95		
Particulate (g)	0		
CO (g)	118		
Test Duration (h)	1.00		

Emissions	Particulate	CO
g/MJ Output	0.00	4.02
g/kg Dry Fuel	0.00	59.89
g/h	0.00	117.98
Ib/MM Btu Output	0.00	9.34

Air/Fuel Ratio (A/F) 14.11

VERSION:

.

L.

.

2.2

12/14/2009

-Cat, Pellet)	Default Fuel Values	D. Fir Oak	HHV (kJ/kg) 19,810 19,887	%C 48.73 50	%H 6.87 6.6	%O 43.9 42.9	%Ash 0.5 0.5			Note 1: For other fuels	fuel composition deterr sample in accordance			Note 2: In cases where	remaining is the same in a row a "divide by y	calculation sheet in su	values by interpolation	and the next reading st	weight.															
(Cat, Nor	(F or C)	(kg or lb)					kJ/kg					73.31). (°F)	Room	Temp	72.0	74.0	73.0	72.0	73.0	74.0	73.0	73.0	73.0	73.0	74.0	74.0	75.0						Γ
Ň	١L	ല			Data	D. Fir	19,288	50.81	6.9	41.88	0.41	272.38	Temp	Flue	Gas	229.0	246.0	254.0	262.0	268.0	272.0	277.0	282.0	285.0	288.0	289.0	294.0	295.0						
ance Type:	emp. Units	eight Units			Fuel		NH	%C	Н%	0%	%Ash	12.49		tion (%)	ő	12.95	13.02	12.19	12.15	13.33	12.71	11.63	10.73	12.23	13.10	14.66	11.36	12.33						
Appli	Г	3								D		8.24		is Composi	လို	7.81	7.71	8.51	8.64	7.36	8.11	9.19	9.94	8.24	7.61	6.11	9.44	8.49						
12/14/2009							5.61	4.60	1.97			0.42		Flue Ga	8	0.36	0.43	0.49	0.30	0.50	0.24	0.25	0.55	0.94	0.47	0.35	0.29	0.25						
: 2.2 509 FAB OPTIMUM	9.5.17	EPA 2		00 110	บอเน		Moisture (% wet):	d Weight (Ib wet):	"n Rate (dry kg/h):	culate Emissions:		Averages	I	Fuel Weight	Remaining (ib)	4.60	4.40	4.00	3.70	3.30	2.80	2.40	2.00	1.50	1.20	0.90	0.40	0.00						
version: k acturer: Model:	Date:	Run:	Tot During #:	District Category:	Output category.		Wood	Loa	Bur	Total Parti				Elapsed	Time (min)	0	2	10	15	20	25	30	35	40	45	50	ο Ω Ω	60						

 For other fuels, use the heating value and omposition determined by analysis of fuel e in accordance with Clause 9.2.

1 I

lote 2: In cases where the "Fuel Weight temaining" is the same for three or more readings I a row, a "divide by zero error" will occur in the alculation sheet. In such cases, adjust the weight alues by interpolation between the first occurence and the next reading showing a decrease in

MYREN CONSULTING, INC

Manufacturer:	509 FAB	Technicians:	ATMYREN
Model:	OPTIMUM		
Date:	9.5.17		
Run:	EPA 2		
Control #:			
Test Duration:	120		
Output Category:	MEDIUM		

Test Results in Accordance with CSA B415.1-09

	HHV Basis	LHV Basis
Overall Efficiency	79.3%	85.9%
Combustion Efficiency	95.5%	95.5%
Heat Transfer Efficiency	83%	90.0%

Output Rate (kJ/h)	23,578	22,366	(Btu/h)
Burn Rate (kg/h)	1.54	3.40	(lb/h)
Input (kJ/h)	29,737	28,208	(Btu/h)

3.08	6.80	dry ib
5.613		
5.95		
0		
204		
2.00		
	3.08 5.613 5.95 0 204 2.00	3.08 6.80 5.613 5.95 0 204 2.00

Emissions	Particulate	CO
g/MJ Output	0.00	4.33
g/kg Dry Fuel	0.00	66.29
g/h	0.00	102.21
Ib/MM Btu Output	0.00	10.07

Air/Fuel Ratio (A/F) 16.68

VERSION:

2.2

12/14/2009

e: NOı (Cat, Non-Cat, Pellet)	ts F (For C) Default Fuel Values	ts Ib (kgorlb) D.Fir Oak	HHV (kJ/kg) 19,810 19,887	%C 48.73 50	el Data %H 6.87 6.6	D. Fir %O 43.9 42.9	V 19,288 kJ/kg %Ash 0.5 0.5	C 50.81	H 6.9	0 41.88 Note 1: For other fuels, use the heat	th 0.41 Tuel composition determined by analy sample in accordance with Clause 9.	208.16 71.40	Temp. (°F) Note 2. In cases where the "Firel We	Flue Room Remaining is the same for three or r Gas Temp	18 171.0 70.0 calculation sheet In such cases add	6 177.0 71.0 values by internolation between the f	19 181.0 70.0 and the next reading showing a decr	20 186.0 71.0 weight.	189.0 70.0	<u> 193.0 70.0</u>	33 197.0 71.0	16 200.0 71.0	00 203.0 71.0	18 204.0 72.0	5 204.0 71.0	20 206.0 71.0	<u> 03 208.0 71.0</u>	<u>13 210.0 72.0</u>	73 213.0 72.0	11 217.0 72.0	1 220.0 72.0	10 224.0 72.0	14 227.0 72.0		229.01 72.01		18 230.0 72.0 18 229.0 72.0
Appliance Typ	Temp. Uni	Weight Uni		I	Fu		Ŧ	%	%	%	%As	5.93 13.81		omposition (%) CO ₂ O ₂	6.16 14.5	6.53 14.1	6.53 14.1	7.03 13.7	6.63 14.1	6.88 13.9	6.43 14.3	5.63 15.(5.73 15.0	5.23 15.4	5.58 15.1	7.59 13.2	7.76 13.0	7.34 13.4	8.99 11.7	9.21 11.4	9.09 11./	8.26 12.4	7.76 13.0	6./1 14.1	5.88 74.5	E E1 1E (5.51 15.0 6.68 14.0
/14/2009							5.61	7.20	1.54	Ð		0.40	i	Flue Gas Co CO	0.40	0.50	0.44	0.43	0.30	0.33	0.36	0.50	0.42	0.47	0.42	0.31	0.31	0.34	0.45	0.65	0.28	0.56	0.28	0.20	0.28	0 71	0.71 0.37
2 09 FAB DTIMIIM	5.17	PA 2		20	IEDIUM	:	oisture (% wet):	Weight (Ib wet):	Rate (dry kg/h):	late Emissions:		Averages		Fuel Weight Remaining (Ib)	7.20	7.00	6.60	6.30	6.00	5.80	5.50	5.30	5.00	4.80	4.40	4.30	3.90	3.50	3.10	2.80	2.40	2.00	1.70	1.40	01.1		0.90
VERSION: 2. In Acturer: 50 Model: 0	Date: 9.	Run: E	Control #:	Test Duration: 1	Output Category: M		Wood M	Load	Burn	Total Particu			i	Elapsed Time (min)	0	5	10	15	20	25	30	35	40	45	50.	55	60	65	0	75		68 20	06	ICP I	001	105	105

. . . .

. . . .

•

MYREN CONSULTING, INC

Manufacturer:	509 FAB	Technicians:	ATMYREN
Model:	OPTIMUM		
Date:	9.5.17		
Run:	EPA 2		
Control #:			
Test Duration:	180		·····
Output Category:	LOW		

Test Results in Accordance with CSA B415.1-09

	HHV Basis	LHV Basis
Overall Efficiency	77.9%	84.4%
Combustion Efficiency	94.5%	94.5%
Heat Transfer Efficiency	82%	89.3%

Output Rate (kJ/h)	15,661	14,856	(Btu/h)
Burn Rate (kg/h)	1.04	2.30	(lb/h)
Input (kJ/h)	20,100	19,067	(Btu/h)

Test Load Weight (dry kg)	3.13	6.89	dry lb
MC wet (%)	5.613		
MC dry (%)	5.95		
Particulate (g)	0		
CO (g)	256		
Test Duration (h)	3.00		

Emissions	Particulate	CO
g/MJ Output	0.00	5.45
g/kg Dry Fuel	0.00	81.94
g/h	0.00	85.39
Ib/MM Btu Output	0.00	12.67

Air/Fuel Ratio (A/F) 21.02

VERSION:

1

2.2

12/14/2009

VERSION: M	2.2 509 FAB	12/14/2009	Andis	nce Tune.		Cot Non
dodel:	OPTIMUM			urce i the .		I (Lat, NUII
Date: Run:	9.5.17 EPA 2		řš	amp. Units aight Units	щ	(ForC) (kgorlb)
Control #: Test Duration: Outout Category:	180 1.0W				ł	
				LUGIC	Jata D. Fir	
Wood	Moisture (% wet): d Weight (Ih wet):	5.61 7 30		VHH	19,288 60 84	kJ/kg
Bur Total Dartic	The state of the second s	40.1 40.1		р н () К	.0.01 6.9	
		ס		∿o Ash	41.88 0.41	
	Averages	0.43	5.38	15.34	190.27	68.22
Elapsed Time (min)	Fuel Weight Remaining (Ib)	Flue Gas CO	composit cO ₂	ion (%) O ₂	Temp Flue Gas). (°F) Room Temn
0	7.30	0.20	6.61	14.23	183.0	66.0
5	7.10	0.19	5.96	14.89	183.0	66.0
10	6.90	0.27	6.93	13.88	185.0	66.0
<u>5</u>	6.60	0.23	7.08	13.75	186.0	65.0
25	07.0	0.31	6.93	13.86	189.0	66.0
30	5.70	0.20	7.03	13.81	191.0	00.0 86.0
35	5.50	0.19	6.03	14.82	193.0	66.0
40	5.10	0.43	5.86	14.87	194.0	67.0
45	5.00	0.41	6.18	14.56	196.0	67.0
50	4.80	0.24	6.16	14.66	197.0	67.0
00	4.40	0.26	5.96	14.85	197.0	67.0
60 25	4.30	0.30	6.26	14.53	198.0	67.0
G0	4.00	0.39	7.06	13.69	199.0	68.0
75	3.70	0.72	7.39	13.19	200.0	68.0
08	3.20	0.22	0.01	14.22	0.102	0.00
85	2.70	0.27	5.68	15.13	202.0	68.0 68.0
06	2.40	0.33	6.01	14 77	203.0	68.0
95	2.30	0.31	5.58	15.21	203.0	68.0
100	2.00	0.34	4.80	15.97	202.0	69.0
110	1 80	0.31	4.40	16.39	201.0	69.0
115	1.50	0.49	5.48	15.22	200.0	0.0
120	1.40	0.42	4.35	16.38	197.0	69.0
125	1.30	09.0	3.03	17.61	193.0	70.07
130	1.20	0.72	2.72	17.86	191.0	70.0
135	1.10	0.97	3.38	17.08	188.0	70.0
140	1.05	0.97	3.03	17.43	185.0	69.0
145	1.00	0.89	2.57	17.93	181.0	69.0
150	0.90	0.90	с. С. с.	17.39	178.0	71.0
160	0.07	10.0	00.7	17.99	1/5.0	71.0
165	02.0	0.0	2.52	18.07	175.0	70.0
1701	0.20	0.41	0.0 8 2 8	14.14	0.171	70.0
175	0.05	0.36	6.06	14.70	0.021	70.0
180	0.00	0.40	6.16	14.58	171.0	20.02

.

 Default Fuel Values

 D. Fir
 Oak

 HHV (kJ/kg)
 19,810
 19,887

 %C
 48.73
 50

 %H
 6.87
 6.6

 %Ash
 0.5
 0.5

ilet)

Note 1: For other fuels, use the heating value and fuel composition determined by analysis of fuel sample in accordance with Clause 9.2.

Note 2: In cases where the "Fuel Weight Remaining" is the same for three or more readings in a row, a "divide by zero error" will occur in the calculation sheet. In such cases, adjust the weight values by interpolation between the first occurence and the next reading showing a decrease in weight.

Unit: Ohmum Run #: EVA 2 Date: 9/5/17 Technicians: AM ESS	Firew Free Present Present Present Point Point Point Present Present Present Present Present Present Present Point	82 82 83 101 105 83 83 83 83 542.6 542.6 542.5 542.5	Zeroed: 04 Tech: 50 Zeroed: 04 Tech: 50 " H ₂ O Tech: 50	vement: 1000 " H20 Tech: 1000 vement: 1000 " H20 Tech: 1000 vement: 10
NG, INC. 1 Traverse Data with 8 :se Points Rev 3, 10.2.16	AP APtrav AP APoent .030 .173 AP APoent .035 .197 .040 .200 .040 .200		I Ps = BP = 28.54 " Hg ometer Pre Test Check - Level: $0/4$ ometer Post Test Check - Level: $0/4$: Pressure: 7.270 " H ₂ O Movement: $.000$ C: Pressure: 7.400 " H ₂ O Movement: $.000$	J: Pre Test: Pressure: $2,480$ "H ₂ 0 Mo Post Test: Pressure: $(4.580$ "H ₂ 0 Mo
 AYREN CONSULTI Dilution Tunne Traver	Point Locatior V-1 Locatior 2 1.5 2 1.5 Senter Center 3 4.5 4 5.5	3-1 0.5 2 1.5 2 1.5 2 4.5 3 4.5 4 5.5 4 5.5 Ave: 8 =	B 29.54 "H. EAK CHECKS: Man Manc 9 Leg: Pre Test:	elocity Head Leg

.

89	
1	
PA 2	;
ш	i
	i

MYREN CONSULTING CERTIFICATION TEST DATA l 6"Tunnel DILUTION TUNNEL CALCULATIONS 4/15/10, Ms=28.78, Bws=2.0%

		COARE MELER				00000		00000	0.2000	.20000	.20000																														
Tinnel	Ctatio 0	Lant C												Ī				-			-]		T			1	T					T					
	dDGM			121		A 828	1 861	4.001 A RE4	1.001	4 0 10	4.734										-										╏			1							
	PROP	RATE	3	/	102 8	1005	100.6	2. 2. 00	- 20 8 8	80.0 7 7 7	91.1																						T	1							
	TUNNEL		(ff/min)	780.55	780.55	780.91	781.62	782.34	783.05	77 287	11.001														T												Ť				
GAS	METER	DELTAH	(in.H2O)	0.900	006.0	0.900	0.900	0.900	0.900		0.900																														
GAS	METER	TEMP	(f°)	67	73	76	<u>8</u>	2	87	g	3																													-	
GAS	METER	RDG	(ff3)	605.701	610.743	615.761	620.854	625.974	631.085	636.196																															
	ĮN L	TEMP	(°F)	85	85	86	87	88	89	6										$\left \right $			╉												╞		╞	╞			
PITOT	DELTAP	in H2O)		0.040	0.040	0.040	0.040	0.040	0.040	0.040																															
	RUN		(min)	0	10	8	ဓ	4	50	00	2	8	60	100	110	120	130	140	150	100	170	180	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350		360
EPA 1 T 1 0-60	509 FAB	OPTIMUM	MYREN	9.5.17	EPA 1 T 1 0-60	1.0195	28.515	80	0.900	605.7010	636.1960	6.1	0.508		138.371	1.542	1.201	0.2000	782.084	87.143	09	2.8316	5.6128	1.284	29.050	0.000	0.024235	1.5421	0.94309	P120	P120	31				OPTIMUM	EPA 1 T 1 0-60	9.5.17	1.284		1.5421
File Name:		Model Number:	Lab Name:			Ineter Box Y hactor:	Darometric Pressure (in Hg):	Ury Gas Meter Temp(avg.)(F):	Delta H(Avg.)(in H2)):	Gas meter initial reading:	Gas meter final reading: _	Total Particulate Catch(mg): _	Sampling Flow Rate(cfm): _	1 : :	l unnel Flow (Qsd) (dscfm)	Emission Rate(g/hr):	Emission Factor(g/kg)	Avg. of Delta P Sq. Roots:	Vs (Avg.)(ft/min):	Tunnel Avg. Temperature (F):	Test time(min):	Fuei Load: (lbs. Dry);	Wood moisture(%wet):	Burn rate(dry kg/hr):	Sample Volume (dscf)	Avg. Tunnel Static (-inch H2O):	Room Blank Catch (mg/dscf):	Total PM Emissions(Er))(g):		Front Filter Number:		Beaker number:	PRELIMINARY RESULTS	FINAL RESULTS:	DATA SUMMARY	MODEL:		DATE:	JBR: I		EWISSION KATE (g/nr)(unadi):

	TEST DAT/
EPA 2 T 1 9.5.17	AYREN CONSULTING CERTIFICATION

DILUTION TUNNEL CALCULATIONS

READING DRY GAS METER (EM) DELTA P 0.20000 0.20000 0.20000 0.20000 SQUARE 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.2000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.20000 0.19748 0.20000 0.20000 0.20000 ROOT 0.20000 0.20000 Static H20) 0.000 - Inch 0.000 0.00 0.00 0.000 0.000 0.000 0.00 [unnel 0000 0.000 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.00 0.000 0.000 0.00 0000 0.00 0.000 0.00 0.00 0.000 4.749 4.848 4.813 4.785 4.750 4 744 4.745 4.743 4.736 4 720 4.656 4.7.18 dDGM vol std 4.858 4.758 4.719 4.707 4.692 4.695 4.672 4.804 4.707 4.708 4.704 4.698 4.887 4.822 4.766 4.751 4.747 4.713 4.685 4.701 4.689 4.791 4 697 4 727 (£ PROP RATE 106.4 103.4 101.5 104.3 102.2 100.4 100.0 100.2 104 2 101.4 101.0 **6**.66 99.4 99.4 <u>98.9</u> 99.5 99.4 98.5 98.5 98.5 <u>98</u>6 100.0 98.9 99.3 0.06 <u>98</u>.6 98.3 97.6 98.7 99.7 98.7 8 ß 80 8 g <u>6</u> VELOCITY TUNNEL 782.60 783.31 786.52 786.52 789.36 (ft/min) 784.03 785.45 786.16 791.48 781.88 784.74 785.81 786.16 785.81 786.52 787.59 788.30 790.42 791.48 791.48 797.82 797.82 785.81 785.81 785.81 791.13 780.81 785.81 789.01 797.47 780.81 787.91 790.01 781.17 789.71 790.07 796.41 DELTA H (in.H2O) 0.900 METER 0.900 006.0 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.90 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 0.900 GAS 0.900 0.900 0.900 METER TEMP GAS Ĵ, 202 88 ାର୍ଥାର 88 98 8 86 88 888 86 ജ 96 98 8 8 8 93 2 6 97 6 6 8 6 6 6 6 6 97 (ft3) 605.7010 610.7430 615.7610 625.9740 631.0850 651.5800 656.6890 682.3010 687.4340 697.6850 702.7990 738.5230 743.6250 672.0450 677.1700 753.7930 661.8110 620.8540 641.3350 718,1110 728.3130 769.1040 774.2250 GAS METER 636.1960 646.4630 666.9230 692.5630 707 8990 713.0000 723.2280 733.4260 748.6830 758.8930 764.0000 779.3100 784.3760 789.4970 RDG TEMP Ð 8 8 5 <u>5</u> <u>1</u>08 108 109 109 109 Ĩ 00 85 85 88 88 8 828 63 ട് 82 8 8 92 80 94 95 96 86 80 6 87 92 93 6 2 6 DELTAP 0.040 0.040 (in H2O) 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0,040 0,040 0.040 0.040 0.040 0.040 0.039 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.0 640 0.040 0.040 0.040 PITOT TIME RUN (min) <u>6</u> 10 120 <u>5</u> 60 60 73 150 12 200 240 250 260 5<u>8</u>0 g 310 320 80 340 350 360 <u>8</u> 180 80 210 270 220 ର୍ଷ୍ଣ 숙망 ജ 2 ଛାଚ୍ଚ 10 0 0.94309 P120, P122 P120, P122 OPTIMUM 0.024235 AUDITED **OPTIMUM** 605.7010 18.0849 170.780 0.0000 509 FAB 789.4970 EPA 1 T EPA 1 T 6"Tunnel MYREN 1.0195 137.275 0.2000 788.325 95.541 5.6128 **1.367** 1.1653 0.8523 EPA 1 T 28.496 6.9916 31, 39 99.977 9.5.17 0.900 0.852 1.165 9.5.17 1.367 0.511 28.3 80 8 Back Filter Number. PRELIMINARY RESULTS FINAL RESULTS: Manufacturer: Lab Name: Run Number: Barometric Pressure (in Hg): Gas meter initial reading: Gas meter final reading: Total Particulate Catch(mg): Sampling Flow Rate(cfm): Front Filter Number: Beaker number: Model Number: Test Date: Meter Box Y Factor: Delta H(Avg.)(in H2)): Tunnel Flow (Qsd) (dscfm) Emission Factor(g/kg) Avg. of Delta P Sq. Roots: Test time(min): Fuel Load: (Ibs. Dry): Sample Volume (dscf) Total PM Emissions(Er))(g): File Name: Dry Gas Meter Temp(avg.)(F): Emission Rate(g/hr): Vs (Avg.)(ft/min): Avg. Tunnel Static (-inch H2O): Pitot Correction Factor: Tunnel Avg. Temperature (F) Burn rate(dry kg/hr): Room Blank Catch (mg/dscf) Wood moisture(%wet): 4/15/10, Ms=28.78, Bws=2.0% AVG. % PROPORTIONALITY : EMISSION RATE (g/hr)(unadj): EMISSION FACTOR (g/kg): DATA SUMMARY MODEL: DATE RUN: DBR:
Meter Bo , 409 Pre Test I , S66 Post Test	Me ox <u>45</u> • <u>4</u>] D Leak Chec S& Leak Che	thod 5G Particu <u>6 - ?</u> Meter Y ek: <u>, 0 0 /</u> _ CFM ek: <u>, 000</u> CFM(x 1.0 (a) -12	0-60 pling Da 0195 5.0 in 2.0 in	Filter Filter Hg Filt Pro Hg Pro	Unit:(Run:(Date:(Page: #'s: (F) /O-Ring I er Size: <u>7</u> be ID #: be Length	2011 0A 2 715/12 10051 P120 (D#: FE N 1:24 in	<u>UM</u> <u>Rev 12/15</u> R) <u>P 12 C</u> <u>110 mm</u> <u>A</u> <u>9 lass</u>
<u></u> <u>Ti</u>	me	Meter Reading	Pi	tot	Tunnel	Meter Temp	Gas	Vac
Clock	Elapsed		ΔP	Pg	(°F)	(°F)	Δh	(in Hg)
1145	00	605.701	.04D		85	67	.90	0
55	10	610.743	.040		85	73	.90	0
1205	20	615.761	.040		86	76	.90	0
15	30	620.854	.040		87	81	.90	0
25	40	625.974	.040		88	84	.90	0
35	50	631.085	.040		99	87	,90	0
45	60 ·	636.196	,040		90	89	.90	О
	70	and the second second second second second second second second second second second second second second second	۲۹۹۰			م. 20 / 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 - 2000 	and the second s	A STATE AND A STAT
	80		444		1	a state of the sta	analar is	1
	90					2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	00		10 m			2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	an Market State	47994
	10		11-4		- Party Production	2 - 54 i Man	a na seasan	
	20				in tradition of	4		and the second sec
	30				n nine and a second second		and the second se	4 4 4 4
	40			er son son son son son son son son son son	t presentation		2011	
	50		angles succession of the		TAY EVENING			
	60		Cur and Profession	8.4-30-0 			SACC OPERATE	R
	70		12 12 12 12 12 12 12 12 12 12 12 12 12 1		Y			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	80		dade a second					· · · · · · · · · · · · · · · · · · ·
	90	v.,	A DECEMBER					

End of Test Weight $F_{.93B3}$ R ______ $\overline{.9356}$ ______ $\overline{.9356}$ ______ $\overline{.0027}$

Meter Bo , 328/ Pre Test I Post Test	Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma Ma M	retallic Bown T ethod 5G Particu G-PMeter ck:CFM eck:CFM	1-60 Hate Sam Y <u>1.0</u> A@ <u>-15</u>	195 0in	ata Filter Filter h Hg _ Filt Pro Hg Pro	Unit: (Run: <u>&</u> Date: <u></u> Page: <u>]</u> r#'s: (F)_ r/O-Ring I ter Size: <u>[</u> obe ID #: obe Length	D#: D#: D#: PI2E(D#: FEI N/A 1:36 in	1 <u>4 ml</u> 7 2 Rev 12/1: (R) <u>P) 2 2</u> / O mm n
<u>Ti</u> Clock	me Elapsed	Meter Reading	Pit AP	ot Pg	- Tunnel Temp (°F)	Meter Temp (°F)	Gas Meter ∆h	Vac (in Hg)
The state of the s	00	and the second sec			- 19	and the second s		a - shakababababababababababa
	10					and the second		
	20				and the second s	U Treases	- Contraction of the local section of the local sec	
A Sourcest	30				atomotion and an			
	40				ر بر تر می از مر از مر از مر از مر از مر از مر از مر از مر از مر از مر از مر از مر از مر از مر از مر از مر از م			
The second second second second second second second second second second second second second second second s	50	المريحة المريحة المراجع المريحة المريحة المريحة المريحة المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ المحافظ	Therefore the set		Construction of the output of	And States and a state of the states	Sarra Linzingli Sarta Martingan	مينية المارية من عن من المن من المارية المن المن المن المن المن المن المن المن
1245	(60)	630.196	.040		90	89	,90	D
5.5	70	641.335	.040		91	90	.90	0
1305	80	646,463	.040		92	91	,90	0
15	90	651.580	. 040		92	92	.90	0
25	100	656.689	.040		92	93	.90	0
35	/ 10	Lolel. BIL	,040		93	<u>CT</u>	,90	0
45	(20)	666,923	. 040		43	44	.90	0
55	(30	672.045	. 040		93	95	,90	0
1405	40	071,170	.040		92	45	.90	0
15	(50	682.301	040		92	95	190	0
25	160	687.434	,040		42	95	140	0
	170	672.563	.040		92		,40	0
45	180/	697.685	1,040		72	96	.90	0
55	[90	702. 199	.040	1	94	47	.40	0

BP

<u>00</u>	28.52	300	28.48		Pre Test Filter Tare	End	of Test	Weight	
60	28.51	-60	28,47		Weight Check	F	140 f	R	
120	28,51				F				
130	28.49				R .9285	·			
<u>940</u>	28.49	$\overline{Avg.} =$	28.494	_ in Hg'	?	(7287		
							19.0		

Meter Bo Pre Test I ,520/r Post Test	Leak Chec Leak Chec	c-allie Brown Thod 5G Particul CFM	60 ate Sam (@ @ (),()	Ding Da	ta Filter Filter Hg _Filt Pro Hg Pro	Unit: Run: Date: Page: #'s: (F) /O-Ring I er Size: be ID #: be Length	$\frac{Opdiv}{D} = \frac{D}{P} + \frac{D}{2} + $	1) U.M Rev 12/1 R)/2 ~2 /Omm
<u>Ti</u> Clock	<u>me</u> Elapsed	Meter Reading (m ³)(ft ³)	Pi ΔP	tot Pg	Tunnel Temp (°F)	Meter Temp (°F)	Gas Meter ∆h	Vac (in Hg)
1505	200	707.899	,040		95	96	,90	0
15	210	713,000	.040		96	97	.90	0
25	2 20	718.111	,040		97	97	.90	0
-35	230	723,228	.040		97	97	.90	0
45	(240)	728.313	.040		98	98	.90	0
55	250	733.426	,040		98	98	,90	0
1605	260	738.523	,040		99	98	,90	0
15	270	743.625	,040		100	93	.90	D
25	280	748:683	,040		100	98	90	0
35	290	753.793	.040		100	98	.90	0
45	(300)	758.893	,040		100	98	,90	D
55	310	764,000	,039		104	98	.90	0
1705	320	769,104	,040		106	98	.90	0
5	30	774. 225	, 640		108	97	.90	0
25	. 40	779, 310	,040		109	97	,90	D
35	350	784.376	.040		109	97	.90	8
45	(360)	789,497	.040		109	96	.90	0
	70							
	80							
	90							· · · · · ·

• .:

BP

<u>00</u>	28.52	300 28.48	Pre Test Filter Tare	End of Test Weight
60	28.51	360 28.47	Weight Check	F. <u>446</u> #
120	28,51	<u></u>	F	· · · · · · · · · · · · · · · · · · ·
(00)	28.49		R <u>,9285</u>	
210	28.49	Avg. = 28.496	in Hg"	<u>.9287</u>
			· · · · ·	180

WST5-Form 9, Pg2, Rev 12/09

	Woodstov	e Data	Sheet #	4-1: In	itial F	ilter Pa	air Tare	Weig	ghts					
	Into Desic	cator: I	Date: 4	10/1-	<u>)</u> Ti	me:/	015	By: _	E5	S From	t Half_	<u>Х</u> В	ack Half_	
	Manufactu	rer:	PAL	<u> </u>		Size	ΤFE 110 mm	<u>n</u> Lot	t, No.	: <u>T1592</u>	<u>4=w</u>	brade: <u>EM</u>	FABT	404120
	Balance U	sed: Sa	rtorius		M	odel: C	P224S			SN: 24	850860			<u>, </u>
	Filter #'s	Fi	irst Vt.	2017 Date	Time	By	Secon Wt	nd •	20M Date	Time	By	Third Wt.	Date	Time
*	PIDI	1.91	203	4/12	1056	ESS	,900	74	8/3	1445	ATM			
-	P 102	.92	18		1054	855	,931	6	1	1447	ATM			
	P103	92	03		1053	ESS	. 930	21		1448	ATM			
~	PION	.92	99		1052	835	. 93	01		1450	ATM			·
·	P105	.93	16		1051	ESS	,93	18		1451	ATM	<u>``</u>		
	P106	.92	27		1050	ESS	. 93	25.		1452	ATM			
	PIOT	9	270		1049	655	.92	72 .		1453	ATM			
~	PIDR	. 92	,07		1047	855	.93	05		1454	ATM			
	PIDA	97	281		1046	ESS	,92	81		1455	ATM			
_	PILD	02	527		1045	ESS	.93;	2B		1456	AM			
	PILL	19	347		1044	ESS	.934	17		1456	ATM			
_	PUZ	01	362		1043	555	.931	a		1457	AM			
	PIIZ	1.9	375		1042	ESS	.937	6		1458	ATM	•		
_	PIN	9:	3110		1041	1255	.93	16		1459	Arm			
	P115	.92	43		1040	ESS	.93	38-		1500	AM	.9339	9/11	1523 E
-	PILL .	C ₄	2210		1039	ESS	. 933	16		1502	Arm			
4	PUD	a	283		1037	1735	.92	78		1504	ATM	,9278	9/11	1522 E
مىسىد	P118	92	24		11736	F55	930	22	1	1506	ATM			
	P119	9:	2,418	<u> </u>	1025	12.55	.934	Ř		1508	AM			
مىيە مىيە	81717	92	8		1024	FSS	. 935	61		1508	AM	509 1	EPA 2 T	10-61
Theory in the	PIZI	1 92	5		1032	E45	.935	14	1	1510	AM	509	EPH2 7	12
· · · · · · · · · · · · · · · · · · ·	L 0127	1 4	2810		1031	ES4	.928	17-1	7	1510	ATM	509 E	PA 2 T	160+
HAT WP	- D102		221		1020	64	.933	6		1512	Али		· · · · · · · · · · · · · · · · · · ·	
HHT WP	PILL DIDU	92	<u>72</u>		10.29	ESC.	1. 42	<u> </u>		1512	AM			
Inset PRO 11	PINE	1-12 1-12	220		1029	CXX	.932	0	J	1514	AM			
inser roll	Chooled I		\mathcal{W}_{\perp}		10000	<u>[[]]</u>		Date			Time:			
	CHECKEU	,yQA	Re	weigh				E	3alan	ce Roon	n Envir	onmenta	l Conditi	ons
	Filter #	WT	Date	Tim	e By	1		WB	I)B	%RH	Date	Time	By
	DII	.9227	9/10	11.0	5 \$	he		51	4	25	48	4/13/17	1024	ESS
•	17:116 D III	<u>, 1327</u> Øzii	91.	11.1	1 8	m		58		70	49	8/3/17	1323	ESS
r	10110	9211	9/1	1/10	09 9	m		54		65	47	19/11/1-	1512	ESS_
	PIN	9371.	9/11	, 14	12 3	m		53		64	4,6	9/10/17	1434	AMI
		· • • • • •	1 <u>_</u>	1 st	· · · · · ·	2^r	d I I	3	rd		4 th	5	h	
	Date			<u>4/</u>	ר <u>ו/31</u>	5	1317	د 	<u>1/n/1</u>	<u>_7</u>	9/14	<u>1</u> +	·	
	Post Weig	hing 0.0	0000g	0:0	000	୦. ସ	0000 7000 2	4	0,001 0 00/	 	0100 39 60	- 91 -	<u></u>	1. A. A. A.
	Scale Che	ck 10	0.0000g	3 <u>4</u> 1	. 7771	ЧĨ	1772	.]	1.77	1	1117	<u>, , , , , , , , , , , , , , , , , , , </u>		

.

WST5-Form 9, Pg3, Rev 12/09

Woodstove Data Sheet #4-2: Initial Beaker Weights (Tare Weights)

	2/20/14	11/1
Into Dessicator:	Date 3/31/17 Time_	1800
		11 01

Into I	Dessicator: Da	te <u>3/31</u>	<u>∫i</u> ∤ Ti	me	1800 By 1	ATM		1040/	-00/0			
Balar	ce Used: Sarto	rius	· · · · · · · · · · · · · · · · · · ·		del: CP224S	Land		1:248:	50860	1	<u> </u>	
Bkr #	First Wt	Date	Time	By	Second Wt	Date	Time	By	Third Wt	Date	Time	By
30	70,7846	3/29	2043	Ym	70.7847	95	1514	AM	son epa	AT	21	
30	. ,											
31	109.6652	3/29	2112	m	69.6653	٩/٢	1352	AM	509 EDA	27	10-	50
31	· · ·	, i										\geq
32	53,5988	915	1407	ATM								
32												
33	53,1490	9 5	1403	AM								
33					· .							
34	53.261	95	150 8	ATM	1							
24									-			
35	53,2807	3/29	2102	Jui	53,2808	3/31	1795	AM	509 EPA 2	Т3		
35												
36	53.5725	3/29	2047	Ym	53,5735	9/5	1359	ATM]
36												
37	53,7159	9/15	1510	Ann								
37												
38	53,2512	3/29	2109:	ehn	53,2512	3/31	1750	ATA				
38			,									
39	53.1491	3/29	2111	M	53.1492	3/30	162)	ADA	509 EPA2	<u>T1</u>	60 -	
39					-				· · · · · · · · · · · · · · · · · · ·			
	-											
								,				
					· · · · · · · · · · · · · · · · · · ·							

Ba WB Sy	alance Ro DB 65	90m Env %RH 49	Date 3/29	Time	litions By
WB Sy	DB 65	%RH 49	Date ²⁰¹² 3/29	Time	By
54	65	48	3/29	0.027.	A
£* 11			1 - 1	d VI #	AM
1.6	65	48	3/30	1612	AOM
57	69	47	3/31	1744	ATM
54	6	44	9/5	1257	AM
3 2	3 rd 31 2000	4 th -9/9	5/16	5 th	
	51 54 54 3 7 7	$ \frac{51}{51} \frac{69}{66} \frac{54}{54} \frac{66}{66} \frac{3^{37}}{531} \frac{3^{37}}{5000} \frac{3}{9} $	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	$ \begin{array}{c cccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

WST5-Form 9, Pg2, Rev 12/09

In	to De	ssicator:	Date <u>3</u>	12/	1 <u>6</u> Ti	me_/	012By	A71	L	Front l	Half_	<u> </u>	Back	Half			
M Ba	anufa	cturer: <u>f</u>	411 artorius			Mo	Size: 10	mm	_ Lo	ot.No.:	T 15 1: 248	92 1FM 350860	Grade	EMF	AB T	¥40	O H W
F	ilter #	First Wt	20 D	16 ate	Time	By	Second Wt	D	ate	Time	By	Th V	ird Vt	Date	Tim	ie]	By
R	81	.4663	3/	26	1410	ATM	. 4664	3	28	1955	Jun						
R	32	.4648		1	1411	ATA	.4648			1956	Ят,						
R	83	.466	F		1412	Am	,46108			1957	Sm						
R	84	 , †															
R	B5	.465	5.		1413	ATM	.4656			1958	In	• #					
R	86	.4651			1414	ATM	.4651			1959	9m						
R	87	. 4659			1415	ATM	.4659			2000	9th	-					
R	\$8	. 4643			1416	Arm	. 4644			2001	Jur	Rŧ	05	14			
R	69	.466	5		1416	Arm	- 4664			3002	Jun,	R	W				
R	010	.4658			1417	ATM	- 4652			2002	bu	RE	E 0	55			
21	8 <i>I</i> I	. 4626	2		1418	ATM	.4626		1	2003	Sul	Rŧ	-0	56			
R	612	,4676	,		1419	ATM	,4676			2003	9m	- K	FD	57			
¢.	\$13	.465	7		1420	ATM	.4657			2004	Jur	, R	20	58			
RI	BIH	,4640)		1421	ATM	.4639			2005	Jun						
R	BIS	. 465	2		1421	ATM	,4657			2006	m				<u> </u>		
R	316	,4651			1422	AM	. 4651			2007	9 mi	. RU	<u> </u>			<u> </u>	10
RI	B 17	,4695			1423	Am	- 4695			2008	Im	2 509	i epi	12		e;	
RI	618	,4679			1424	ATM	. 4678		T	2009	9m						
RI	319	.4680)		1424	ATM	.4679			30/0	Im						
RÍ	320	,4685	5		1425	ATM	. 4685			2010	Ju	•					
R	321	.4662			1426	Am	.4660			ə011	Jan	·					
RI	522	14649	3		1427	AM	-4448			2012	In				<u> </u>		
R	373	, 467	Ī	1	1428	ATM	.4672	×		2013	Jun	<u>+</u>			<u> </u>		
R	324	, 466	0 \	V	1428	AM	.4660		\mathcal{V}	2014	om	•					
											<u> </u>				<u> </u>		
Ch	lecked	l by[1.T. V	ny	Nun			Da	te:	3/29	<u> 12</u>	Time:_		2011	e dition	-	
		QA	<u>Re</u>	weig	çh	<u> </u>	. 	XXT	Bal	ance K		Envire (DII	Date			15 2	
Fi	lter #	WT	Date		'ime	By		W.	R.	DR DR	Ÿ	% KH	Date	111		יץ 	
RI	83	.4667	3/29	9	13	ES	5	5	4	65		48_	3/25	7/1 13	51	<u>4.779</u>	ł
R	BID	.4654	3/29	9	115	Es:	5	5	ч_	65		48	3/28	110/9	35 1	4Th	1
RI	BIT	.4695	3/29		717	ES	2	5	ל	60		48	3/29/1	6 90	<u>9</u>	355	
RI	B21	,465R	3/29	-	918	ES.	5					41	 			<u></u>	
Pos	≕ ↓ st	Da	te	• <u>•</u> .	1 st 3/2	9	2 nd		3 rd	3/29	- 4	un.		5 ^m			
We	eighin	g 0.0	000g	à	0.000	0 Ār	<u>00000</u>		0.01 Qa	990	-						
Sca	ale Ch	eck 100).0000g		<u>14.44</u>	122	17.977	P	14	1173				;-			/

Woodstove Data Sheet #4-1: Initial Filter Weights (Tare Weights)

WST5-Form 9, Pg3, Rev 12/09

Woodstove Data Sheet #4-2: Initial Beaker Weights (Tare Weights)

Into I	Des	sicator	: Da Sarto	ite 10/0	<u>11/16</u> T	ime Ma		<u>о</u> Ву СР224	∕ <u>`</u> A S	JM	SN	J:248:	5086	0				
Balai Bkr #		First Wt	t	Date	Time	By		Second Wt		2016 Date	Time	By	-	Third <u>Wt</u>		Date	Time	By
60	R	.536	4	11/3	11:23	ATM	70	0.5370	0	11/22	0922	She	70	.536	8)	11/23	1820	Am
60										· 							1 CAP	A
61	70	.83	54	11/3	1121	ATM	70	.8363		11/22	-0920	Sm	P	<u>, 83.5</u>	6	1/23	1005	AM
61	70	1,831	53	11/25	0824	Du	71	1.835	<u>3)</u>	11/26	949	ATM	<u>~/</u>	lank	nen.	• · · · · · · ·		Ministri
62	61	3.73	31	11/3	1116	AM	6	8,1 <u>330</u>	シ	11/22	0924	Din	<u> </u>	ne in	1.	4000	EPB (6 T.
62				· · ·			-				<u> </u>		<u> </u>	0	æ 1.		5040	
63	70	. 625	2	11/3	1119	ATM	QL	0,625	<u>3)</u>	11/22	0921	Ju	-7h	dir T	el f	200	5PAG	71
63	<u>. </u>			ļ						·								
				ļ					-		·							
				<u> </u>		<u> </u>								<u>.</u>	<u>-</u> .			
											· · · · ·			tot			<u> </u>	
				ļ						· ·					100 V			
										· · · ·			12	V mg	p 200			
	· .		,	·														
				<u> </u>														<u> </u>
		<u></u>		<u> </u>				<u> </u>		i								
	<u> </u>														<u> </u>			
			•															<u> </u>
				<u> </u>				<u></u>										
						 												
· ·						<u> </u>		·										
			<u> </u>															
						·			<u> </u>									
				l						Date [,]			Fime					
Checi	ked	by)A R	eweig	 h	<u> </u>			'	Bal	lance R	oom	Env	ironme	ntal	Cond	itions	
Reak	er	<u></u>		ate	Time	By	·· • .].: 	W	/ B	DB	%F	ЯН	Date		ime	By	
#					-	v				50.	70	4	3	113	1	028	ATM	1
	-	·						ł	┢	<u> </u>				11/22				1
	<u> </u>	<u></u>						4				+		11/23				1
					<u></u>	— —								11/29	5			
		·							-		<u></u> "	1	_	11/26				
L					1 st	Ĺ		1 2 nd	L		3 rd .		4 th			5 th		
Date					11/3	116		11/22/1	16	<u>_u/;</u>	23/16	<u>+</u>	1 29	5/16	11	126 11	<u>(</u>	
Post V	Vei	ghing (0.000)0g	0.00	00		0,000	্ ক	<u>0.0</u> 00	0000	000	00. 20 0	<u>691</u>	0	<u>,000</u> 7 6 6 6	ลั้ว -	
Scale	Ch	eck	100.0)000g	<u>99.90</u>	42		41, 111	ling.	44	. 776	_	17.1	<u>/·</u>	1		ţ~	N

No 荠

P.1054

	20							.		-1			r—	 r			<u> </u>		·		_ 				T ·		:		ļ
J J	ev 10/	Bv									By		<u> </u>				_		ions						~~~	a near b			k
- The state	Pg 1, R	Time		-							Time								Condit						10 61		26 15		
Co H	orm 9, 1	Date									Date		. 94						nental		-				1 12	<u>ר</u> ג	Ş		-
Unit C Run # S Date: G	WST5-F	Third									Third								oom Environn			-				5 C38.01	wt. 70.8353		
		Bv	ž		-						By							-	Scale R							3	10.12		
. *•	-	Time	1430								lime				 						<u> </u>				ent 🛬	25	r		
hts	-	Date	2/30/	1							ate]					-+	╉	-		œ	6	19		12	Comm	Beak	1 1		
al Weig	-	l h	52						-		d b							_			%KH	8	0						
ant Fin	eights	Secor	10, 83							hts	Second								SUO		90 80	00	c /				<u> </u>		
Const	iker W	Bv	MIL N		2	-				er Weig	By								Conditi		88 	24	49						
et #4-3:	nal Bea	me	A	-						al Filt	ime					-		-	aental (5y	R.	TM						
ta She	Ē	e Ti	1139			-				Fin	te T			 				_	vironn	,	ne l	S A	H H					L	
ove Da		Dati	11/2		_	 					Da			 _			\downarrow		om En		e 	611-6	0 120						
Voodst		rst	3354								irst								cale Ro	8		<i>a</i> / <i>c</i> 1	6/11						
LY Y		Ē	Ģ								E								Š	ighing	ession	-	7	3	4	5	9	٢	
Bla		Bv	- Aw								By									Ň	Ň								
1 6 20		Time	1412								Time										- A	[By				
Acel	•	Date	2/23				ę.				Date								/eight		I MI				Wt				
بة 10 د	-	_	111						-		essic	-							'inal W		FIDA				Final				
AC TA	et sa s	Inte	19.04								Into D			 	-		_		eweigh: F		eaker #				Filter #				
witoo		Beaker	61		u.						Filter #			-			-		QAR		Date E				Date				
			. 1		1	1	ii			1		ji i i i i i i i i i i i i i i i i i i			hapa(· · · · ·							

-

.

DINUM PANUM S/17 Mam 9 Po 1 Rev 10/10	Date Time Rv	1/16 1455 Jun					Date Time By	112 1436 AM	4					nental Conditions							;		
Unit C Run # U Date: 9 WST5-F	Bv Third	(5899. 60) WIA					By TTRRA	× (1882))				-	cale Room Environ									
Veight 0-60	Date Time	9/12/11/2/					Date Time]	3 2191 6/6						Ň	8	6 	10	11	12	Comment		[]	
onstant Final V r Weights	Second	69.687				Veights	Second	1381						ditions			70 47	70 47	67 48	65 24	96 199	5	
ta Sheet #4-3: Co Final Beake	Time Bv	ILaIO ESS				Final Filter V	e Time By	2/1/ 000						 ironmental Con			O ATM 56	295 55	3 ESS 56	AM SY	1 ATM 53		Ĺ
Woodstove Dat	First Date	2/6 1629					First Dat	283 9/4						Scale Room Env	2017		9/10 1130	5/10202	917 1357	TIZ NX	9/16 11131	320 EV.	
	ime Bv	15 Br 69					ne By	N WW O						 •	Weighin	Session		2	ŝ	4	S	0	7
ν Q	Date Ti	10 21		~			ate Tir	N V			-			ight	V+ B	ĥ	SQ AM			Vt By			
و	nto I	10659					Dessic D	5					╞╼┤	Final Wei	Final V	т. титат	96.66			Final V			
	er Iı	60'					r# Into	R R R	_	_				Reweigh:	Reaker #	DCarbon #	3			Filter #			
	Beak	<i>w</i>					Filte					2		δĄ	001 P	, Jan	<u>8</u>			Date			

	0/10	2	J	Т			T			•	[A	2		-	Г	Τ	T	[-]	7.4		Τ							
	l a	B	nul l									Â	ð					+-		tions									
- E	Pg 1, R	Time	1453									Time	1484							Condi									
E to	orm 9.	Date	ð//10									Date	21/1	e;				T		nental									, ,
	ST5-F	d	0					-						$\overline{\}$						viron									
Uni Run	a y	Thir	h51.5									Third	1461							om En			-						
\square		v		-+	+			_					5-15	4			<u>, </u>		┝╼┥	ule Ro		-							
	5	e B	N 3	_			-		_			B	<u>S</u>		-					Sca								ŗ	
	Ø	Tim	SA	_								Time	1602								80	6	0	E	12	ment			
ights		Date	9/12									Date	-11-													Com			
ial We		hd	39									q	-									%KH	40	48	£h	and Ben	41		
ant Fir	eights	Seco	53.5								ghts	Secor	946							ions	ĥ	DB	70	5	ŝ	64	ŝ		
: Const	aker W	Bv	: 55								er Wei	By	5		+					Condit		×Β Σ	5 C	26	54	ŝ	5		
st #4-3.	nal Bea	ne	9)0	- +							al Filt	ime	Ś				-	<u> </u>		nental		λ γ	r S	Š	m <		TW/		
a She	Fi	Ē	9)				_				Fir	F	64				+	<u>.</u>		ironn			2	6) 6) 6)	5 ¢	1 1 1		\dashv	4
e Data		Date	612									Date	0/0							m Env			25	135	142	5	25-		
odstov			29									t .	30							le Rooi	tion	Date	316	917	9//2	g/h.	116		
Wo		First	3,15									Firs	E.							Scal	ing	° E O							
		Ň	X	+								Ň	*		+	_	+	+			Weigh	Sessi	1	7	3	4	S	و	-
		le B			-	•						B	V	-			+	-]
	~	Tim	211									Time	1241	1							6	۲ų V	AW			By			٦
	С С	Date	9/6		-			٢				Date	3/6							Veight		Ĭ	40			l Wt	_		
	Ś	- -	3									essic	24							inal V		Fina	53,15			Fina			
		Int	53.15									Lato D	946							igh: F	:	Ker#	~			er #			
		er Br	<i>••• 7</i>									r#	9	`	-			1		\ Rew		Beal	3C			Filt			
		Beak	0									Filte	P12					_		QA		017	±1/k	ej		Date			
		L									ſ		الس	f		ſ	4				<u> </u>	1	ן״	L		L_			

-

`

	Train 1 Woodstove Particula	te Unit	: Optimum	
	Catch Processing Sheet	Run	: <u>EPA' 2</u> Train _	
	Woodstove Data Sheet #5	Date Date	e: <u>9/5/17</u>	<u>. </u>
·		Revise	d 11/15 - Data Sheet #5	
	<u>0-60 Minutes:</u> <u>Filters:</u>	Knelallic Bra		
	Filter # (Front): <u>P120</u>	Beaker #: 3	Final Wt.: <u>69</u> 6	<u>688</u> g
	Tare Wt.: <u>,9356</u> g	ml	Tare Wt.: 69,6	<u>653 g</u>
	Filter # (Rear):	Desiccant: Acetone	Net Wt.: 0	035 g
	Tare Wt.: g	Beaker Tare Wt,. Chee	k: 69,6652	g
	0-60 Minute Combined Filter Final	Weight: <u>9382</u>	g enterman	
	0-60 Minute Combined Filter Tare V	Weight: <u>9856</u>	g /	
	0-60 Minute Combined Net Catch W	Veight:0006	g	
	<u>60 Minutes Plus:</u>			A
	Filter # (Front): <u>122</u>	Beaker #: <u>39</u>	Final Wt.: <u>53 , 1 :</u>	540 g
	Tare Wt.: <u>9287</u> g	ml6O	Tare Wt.: <u>53, 11</u>	192 g
	Filter # (Rear):	Desiccant: Acetone	Net Wt.:	<u>248 g</u>
	Tare Wt.: g	Beaker Tare Wt. Chec	k: 53,1491	_ g
	60 Minute Plus Combined Filter Fin	al Weight: <u>946</u>	g /	
	60 Minute Plus Combined Filter Tar	e Weight:, 9287	g	
	60 Minute Plus Combined Net Catch	Weight: <u>0174</u>	g /	
	Acetone Blank Calculation: Blank D	ate: <u>12/19/16</u> Blank Be	aker #: <u>61</u> Desicca	nt: 50 ml Acetone
	Final Wt.: <u>70, 8352</u> g - Tare W	vt.: <u>70,8353</u> g=	Net Catch Wt.: -0.0	001 = 0.0000 g
	Net Catch Weight: 0,0000 g/	50 ml Acetone = <u>, 000</u>	🔉 g/ml Acetone B	lank Residual Value
	0-60 Minute Acetone Residue Value	Calculation:		
	(_,0000g/ml Acetone)(<u></u>	2000 g Resid	ue Value
	60 Minute Plus Acetone Residue Value	ie Calculation:		
	(2_ml Acetone) =	🕫 g Resid	ue Value
	Total Particulate Catch Calculations	<u>: 0-60 Min</u>	ute	60 Minute Plus
	Combined Filter Net Catch Weight:	10020	<u>g</u>	<u>.0174</u> g
	Acetone Wash Catch Weight:	,0035 g	,0048 g	
	Less Acetone Residual Value:	- <u>,0000 g</u>	- <u>රථාය</u> g	
	Equals Net Acetone Wash Catch:	,0035	g	<u>.0048 g</u>
	Total Net Catch (Combined Filter + A	Acetone Catch): .006	g /	<u>0222 g</u>
		<u> </u>	mg 🖊	<u>22.2</u> mg
	Total Train 1 Net Catch (0-60 Minute	e + 60 Minute Plus Catch	es):	<u> ng /</u>

-

.

EPA 2 T 2 9.5.17 MYREN CONSULTING CERTIFICATION TEST DATA

DILUTION TUNNEL CALCULATIONS

READING DRY GAS METER (EM3) DELTA P 0.20000 0.20000 0.20000 0.20000 SQUARE 0.20000 0.20000 0.20000 .20000 0.19748 0.20000 0.2000 0.20000 0.20000 0.20000 0.20000 ROOT Static unne - Inch 0.00 0.000 0.00 0.00 0.00 0.00 0.000 0.00 0.000 0.000 0.000 0000 0000 0.000 0000 0.000 0.000 0.000 0.00 0.000 0.000 0.000 0.00 0.00 H20) 0.000 0000 0000 0000 0.00 0.000 0.00 0.00 0000 0.00 0000 0.00 000 4.684 4.678 4.730 4.664 4.644 4.674 4.682 4.688 4.669 4.668 4.666 4.659 4.708 .685 4.692 4.670 .680 4.685 4.681 4.687 4.678 4.682 4.686 4.666 4.657 4.662 4.654 4.692 4.682 4.703 4.665 4.700 dDGM vol std 4.687 4.662 4.684 4.701 (£3) PROP 102.0 100.5 100.3 100.3 100.3 100.0 100.2 RATE 100.4 100.2 100.2 100.0 100.0 101.3 100.0 <u>1</u>00,1 101.1 100.9 99.6 99.8 <u>99.8</u> <u>10</u> <u>99.8</u> 99.5 99.6 99.4 <u>99.8</u> <u>99.8</u> <u> 9</u>.66 100.7 9<u>0</u>.3 99.2 90.3 99.7 99.1 66 99.7 8 VELOCITY TUNNEL 786.16 784.74 786.52 786.52 786.16 786.52 787.59 781.88 782.60 784.03 785.81 789.36 791.48 791.48 (ft/min) 780.81 785.45 785.81 785.81 785.81 785.81 785.81 788.30 790.07 791.13 791.48 790.01 797.82 797.82 789.01 789.71 797.47 783.31 790.42 796.41 780.81 781.17 787.91 DELTA H (in.H2O) METER 0.850 GAS 0.850 0.850 0.850 0.850 METER TEMP 69.0 71.5 715 72.5 73.5 74.0 74.5 76.0 76.0 76.5 0.44 78.0 78.0 80.0 80.0 80.5 82.0 82.0 82.0 82.0 82.5 82.5 GAS 68.0 78.5 79.0 80.0 81.0 81.0 82.0 82.5 83.0 83.0 83.0 83.0 £ ŝ ខ្ល ß 499.421 504.468 509.530 514.590 519.661 560.391 565.482 570.593 575.686 580.774 585.868 596.047 601.176 474.327 479.319 484.321 489.380 524.730 529.799 616.545 621.656 626.804 631.935 METER 494.420 534.879 590.953 611.422 637.046 469.339 539,984 545.087 606.299 642.156 647.296 550.184 555.287 464.300 GAS (ff3) TEMP 106 ĽZ $\tilde{\mathbf{Q}}$ <u>6</u> 8 ő 8 8 5 ŝ ŝ £ റ്റ ଞ୍ଚାଞ୍ଚ 88 88 စ္ထ 6 5 88 88 92 92 92 8 8 8 95 യ്യ 86 98 8 92 97 87 6 DELTAP 0.040 0.040 0.040 0.040 0.040 0.040 0.039 (in H2O) 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 0.040 000 0.040 0.040 0.040 0.040 0.040 0.040 TIME RUN (min) 150 170 240 310 330 380 <u>6</u> 10 52 <u>5</u> 140 160 180 <u>8</u> 200 240 220 250 260 270 280 lõe 320 8 290 350 8 റ്റ ജ 9 g င္ပ 2 8 ട് 0 4 EPA 2 T 2 EPA 2 T 2 OPTIMUM 0.024235 6.2525 **OPTIMUM** 0.94309 P121 P121 AUDITED 509 FAB MYREN 788.325 168.486 100.026 464.300 18.0849 0.0000 6"Tunnel 28.496 0.2000 95.541 5.6128 647.296 0.850 137.275 0.7622 EPA 2 T 0.9847 1.042 0.762 9.5.17 25.4 0.508 1.367 9.5.17 1.0421 1.367 360 62 ရ Run Number: Meter Box Y Factor: Lab Name: Test Date: Gas meter initial reading: Gas meter final reading: Front Filter Number: Back Filter Number: Beaker number: **PRELIMINARY RESULTS** File Name: Manufacturer: Model Number: Delta H(Avg.)(in H2)): Sampling Flow Rate(cfm): Tunnel Flow (Qsd) (dscfm) Emission Rate(g/hr): Sample Volume (dscf) Avg. Tunnel Static (-inch H2O): Room Blank Catch (mg/dscf): Total PM Emissions(Er))(g): Pitot Correction Factor: Barometric Pressure (in Hg): Dry Gas Meter Temp(avg.)(F): Total Particulate Catch(mg): Emission Factor(g/kg) Avg. of Delta P Sq. Roots: Vs (Avg.)(ft/min): Tunnel Avg. Temperature (F): Test time(min): Fuel Load: (lbs. Dry): Burn rate(dry kg/hr): 4/15/10, Ms=28.78, Bws=2.0% Wood moisture(%wet): AVG. % PROPORTIONALITY : EMISSION RATE (g/hr)(unadj): EMISSION FACTOR (g/kg): FINAL RESULTS: DATA SUMMARY MODEL: DATE: RUN: DBR

N , P P	Aeter Bo 701 / , Pre Test I 343 Post Test	Mer x5 7095 Leak Chec S Leak Chec	thod 5G Particul 1 <u>1 - M</u> Meter Y :k: <u>* 00 15</u> CFM ck: <u>. 025</u> CFM	ate Samp , 984 @ - 16. @ - 13.	2 oling Da <u>17</u> <u>7 </u>	ita Filter Filter HgFilt Pro HgPro	Unit: (Run: <u>6</u> Date: <u>9</u> Page: / #'s: (F) <u>P</u> /O-Ring II er Size: <u>7</u> be ID #: be Length	$\frac{10}{12}$	<u>u M</u> Rev 12/15 R) <u>P12</u>] /(mm
	Ti	me	Meter	Pit	tot	Tunnel	Meter	Gas	
	Clock	Elapsed	Reading	ΔΡ	Pg	Temp (°F)	Temp (°F)	Meter ∆h	Vac (in Hg)
1	145	00	464.300	.040	CARDING STATES	85	68	.85	-20
	55	10	469.339	.040		85	69	.85	-210
	1205	20	474.327	.040		86	71.5	.85	-2.0
	15	30	479.319	.040		87	71.5	.85	.2.0
-	25	40	484.321	.040		83	72.5	.85	-2,0
	35	50	489, 380	,040		89	73.5	,85	-2,0
	45	60	494.420	.040	<u> </u>	90	74	,85	-2.0
	55	70	499.42	,040		91	74.5	.85	-210
Γ	1305	80	504, 468	.040		92	76	.85	-210
	15	90	509,530	.040		92	76	.85	-20
	25	100	514.590	.040		92	74.5	,85	-2,0
	35	110	519.661	,040		93	77	.55	-2.0
	45	(120)	524, 730	,040		93	78	,85	-2,0
	55	130	529, 799	,040		93	78	.85	-2, D
	1405	140	534.879	,040		92	78.5	.85	-2.0
	15	150	539,984	,040		92	79	.85	-2.0
	25	160	545.087	,040		92	30	.85	-2.0
	35	(70	550.184	.040		92	80	,85	-2,0
	45	(180)	555287	,040		72	BD	.85	- Z. U
	55	[90	560.391	.040		44	80.5	.85	-Z.0

BP

00	29.52	300	28,48	Pre Test Filter Tare	End of Test Weight	
60	28.51	363	28.47	Weight Check	F., 4555 R	
120	28.51		<u> </u>	F		—
100	28.49	<u> </u>		R .4352	- 02/1	
240	28.49	Avg. =	28,496	_ in Hg"	<u>.4551</u>	
			-		OLDE	

Meter Bo , 70 / / , Pre Test I 3435/ 2 Post Test	Met x <u>\$1</u> '70 25 Leak Chec 346 Leak Che	thod 5G Particul	ate Samı 7 0, 9 0 – 16 0 – 13	72 oling Da 847 .75 in .5 in	ta Filter Filter, HgFilt Pro HgPro	Unit: <u>(</u> Run: <u>E</u> Date: <u>9</u> Page: <u>2</u> #'s: (F) <u>f</u> (O-Ring II er Size: <u>7</u> be ID #: be Length	201-3100 2121 15/1= 15/1= 121 121 121 1= 121 1= 121 1=	<u>Rev 12/15</u> <u>β</u> (12) <u>β</u> (12)
Ti	me	Meter	Pi	tot	Tunnel	Meter	Gas	
Clock	Elapsed	Reading	ΔP	Pg	Temp (°F)	Temp (°F)	Meter ∆h	Vac (in Hg)
1505	200	565.482	'orto	Constant of the owner of the owner	95	81_	.85	-2,0
15	2 10	570.593	.040		96	81	.85	- 2,0
25	2 20	575.686	,०५०		97	81	.85	-2.0
35	230	580, 774	.040		97	82	.35	-2,0
45	(240)	585.868	.040		98	82	.35	-2,0
55	250	590,953	.040		98	82	.85	-2.0
1605	260	596.047	.040		99	82	.85	-2,0
15	270	601.174	.040		100	82.5	.85	- 2.0
25	280	606.299	,040		100	82.5	.85	-2.0
35	290	Lell, 422	.040		100	83	.85	-2.0
45	(300)	616.545	,040		100`	95	,85	-2,0
55	310	621,656	.039		104	83	,85	-2.0
1705	<u>3</u> 20	626.804	.040		100	63	.85	-2,0
15	3 30	1031,935	.040		109	83.5	185	-20
25	<u>3</u> 40	637.046	.040		109	03.5	.85	-12
35	\$ 50	642.156	.040		109	82.5 DO E	185	-2.0
45	(360)	647,296	.040		109	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	185	-2,0
	70	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
	80	e						·
	90					<u> </u>		

₿₽

۰.

End of Test Weight Pre Test Filter Tare Weight Check 300 28.48 00 veight C F R <u>.935</u> _ in Hg" F_____ R_____ 28 51 60 28.5 120 49 23 Ĺ <u>9351</u> Avg. = <u>28.496</u> 28

-

		10			·			r		T				ام ا				Т	— T	T	r			1 1		Т	T				
	}	v 10/	Bv	ATM									By	655								ions									
~		g l, Re	Time	<u>887</u>			-+						Time	607								Conditi			-						
It'in	S 12	rm 9, P	Date	CU R			-+						Date	12/6	, ti							nental									
000		ST5-Fo	đi 1	s S									-	v		$\left \right $		+	- +			wironn									
llnit	Run Date	Ň	Thire	0.78°									Third	9554								om En		$\left - \right $							
	2	۵. پ	Bv	<u>7</u> 22									3y	14			_					cale Ro					_				
	F		me	os E		_							ne I	180			-	-		_		Š						nt			
	S		te Tii	7 160	_		_						e Tin	0				_		_			ø	6	10	11	12	omme			
	Weight		Da	1620									Dat	9/(6										KH	1		-00			_	
	Final ¹	ts	econd	.780									cond											% \$	ĥ	h	7 4	J		4	
	Istant	Weigh	<u>ت</u>	22								eights	Se	0								ditions			20	70	19	9	5	ð	
	3: Con	eaker	Bv	Ż	J.							ilter W	By	WW		AW	5 19				-	al Con		× R	3	58	56	Ś	\mathfrak{G}	5	
	ieet #4-	Final B	Time	102	504							Final F	Time	50		1433	Ì					nment	f	By	ATW	Der	ESS	ATW.	AN A	ATM	Ĺ
	Data Sl		ate	1.0 2	3/10/1								Date	20		10						Enviro	1	Time	130	2052	1358	cth/		816	
	dstove			2	00					<u> </u>	_								4			e Room	tion	Date	3	9/6	7/7	1/12	2		
	Woo		First	1.789	0.79								First	9553	K	<u>155</u>)					Scal	hing	ioi				2			
	·			T M	9	/						1		N.	- - -	m	/				· ·	i	Weig	Sess		2	6.0	4	ч.,		
			ne						<u> </u>				le E	0	; 	<u> </u>						L			J	L	L	1			
			Ë	-	~	 				 	-	-	ijŢ	£	/ 	<u> </u>						t l		By	NOV.	•		By			
		20 00	Date	9/6	1 .				ĺ			,	Date	0		-						Weigh		lal Wt	200			hal Wt			
		_	ţ	396									Dessic	9								Final		Fin	2			Fin			
			1	102									Into	5								eweigh:		eaker#	05	•		Filter #			
			aaltar	õ									Gilter #	101		ļ						QAR	-	ate B	Ċ			ate		 	
			a a			1				1				ل ل	<u>`</u>		<u> </u>	<u>_</u>	<u> </u>					ÄR	0			A	<u> </u>		

Train 2/ Room Blank Woods Particulate Catch Processing Woodstove Data Sheet #5 ASTM E 2515/ EPA M5G-1	tove Sheet TZ	Unit: <u>Optimum</u> Run: <u>EPA 2</u> Train <u>I</u> Date: <u>9/5/17</u> Technicians: <u>AM</u> ESS Bevised 11/15 - Data Sheet #5A
Filters:	.198 8.6 .	
Filter # (Front): /	Beaker #: <u>30</u>	Final Wt.: <u>70. J900</u> g
Tare Wt.: <u>935</u> g	ml	Tare Wt.: <u>70, 78 47 g</u>
Filter # (Rear):	Desiccant: Aceton	ne Net Wt.: <u>.0053</u> g
Tare Wt.: g	Beaker Tare Wt,.	Check: <u>70, 7845</u> g
Combined Filter Final Weight:	<u>1552 g</u> -	
Combined Filter Tare Weight:9	<u>351 g</u> 1	
Combined Net Catch Weight:	201 g	
Acetone Blank Calculation: Blank D	ate: 12/19/16 Blan	nk Beaker #: Desiccant: 50 ml Acetone
Final Wt.: <u>70,8352</u> g - Tare W	t.: <u>70.8353</u>	g = Net Catch Wt.: -0.0001 = 0.0000 g
Net Catch Weight: g / 5	50 ml Acetone =	g/ml Acetone Blank Residual Value
Acetone Residue Value Calculation:		
(ml Acetone) =	<u>,0000</u> g Residue Value
Total Particulate Catch Calculations:		
Combined Filter Net Catch Weight:		.0201 g
Acetone Wash Catch Weight:	<u>.0053</u> g /	
Less Acetone Residual Value:	<u>,0000</u> g	
Equals Net Acetone Wash Catch:		<u>.0053 g</u>
Total Net Catch (Combined Filter + A	cetone Catch):	.0154 g
		<u>\$5.4</u> mg

5

•

,

EPA 2 T 3

.

• • • •

ROOM BLANK SAMPLE FLOW PROPORTIONALITY

MYREN CONSULTING CERTIFICATION TEST DATA

•	
1	
	-
	α
	C
	ē
	-
	5
i i	~
1	_
	· ·

ω
Ō
0
N
\geq
-
\sim
ß

10 Name.	7 C T C T C T		S A C	TNTEDUAL	CAMPT TNC	TUNNEDUAL	and var	240 240	TOV CAC
lanifacturar.	500 FAR	NHO	danew.	CAMPLE	aura a	SAMPL.TMC	daman	Memor	
anutaccutet. Adal Numhar:		TIME	BEADTING		*	ontransc	DEADTWC		
Lab Name:	MYREN	(uin)	Ch. Ft.)	(Cn. Ft.)	DIFFRENCE	(ufn)	(EW)	5	4
Test Date:	9.5.17	0	46.6154				1.3200	0.12	68.5
Run Number:	EPA 2 T 3	10	51.7466	5.1312	0.000	0.51312	1.4653	0.12	69.0
eading (cf):	46.6154	20	56.8001	5.0535	-1.5141	0.50535	1.6084	0.12	70.5
eading (cf):	225,9891	30	61.8254	5.0253	-2.0647	0.50253	1.7507	0.12	73.0
Time (Min) :	360.0	40	66.8401	5.0147	-2.2712	0.50147	1.8927	0.12	74.0
Rate (cfm):	0.4983	50	71.8759	5.0359	-1.8582	0.50359	2.0353	0.12	75.0
ary Results:	×	60	76.9012	5.0253	-2.0647	0.50253	2.1776	0.12	75.0
nal results:		70	81.9018	5.0006	-2.5465	0.50006	2.3192	0.12	76.0
- :48	28.496	80	86.9165	5.0147	-2.2712	0.50147	2.4612	0.12	77.0
Average An	0.120	96	91.8923	4.9758	-3.0282	0.49758	2.6021	0.12	77.0
ET Temp (F):	79.5	100	96.8717	4.9794	-2.9594	0.49794	2.7431	0.12	78.0
Lume (dscf):	160.927	110	101.8510	4.9794	-2.9594	0.49794	2.8841	0.12	78.0
is Meter Y:	0.9626	120	106.8339	4.9829	-2.8906	0.49829	3.0252	0.12	0.67
Catch (mg):	3.900	130	111.8204	4.9864	-2.8217	0.49864	3.1664	0.12	79.5
ank mg/dscf	0.024235	140	116.8139	4.9935	-2.6841	0.49935	3.3078	0.12	80.0
Rate $\Delta_{\mathbf{i}(\mathbf{v})}$::	-2.896	150	121.7968	4,9829	-2.8906	0.49829	3.4489	0.12	80.0
		160	126.7161	4.9193	-4.1294	0.49193	3.5882	0.12	80.5
1		170	131.6849	4.9688	-3.1659	0.49688	3.7289	0.12	80.5
		180	136.6395	4.9546	-3.4412	0.49546	3.8692	0.12	81.0
1		190	141.6048	4.9652	-3.2347	0.49652	4.0098	0.12	81.0
		200	146.5700	4.9652	-3.2347	0.49652	4.1504	0.12	81.5
		210	151.5282	4.9582	-3.3723	0.49582	4.2908	0.12	82.0
		220	156.4899	4.9617	-3.3035	0.49617	4.4313	0.12	82.0
		230	161.4551	4.9652	-3.2347	0.49652	4.5719	0.12	82.5
		240	166.3851	4.9299	-3.9229	0.49299	4.7115	0.12	82.5
		250	171.3856	5.0006	-2.5465	0.50006	4.8531	0.12	83 . 5
1		260	176.3438	4.9582	-3.3723	0.49582	4.9935	0.12	83.5
1		270	181.3055	4.9617	-3.3035	0.49617	5.1340	0.12	83.5
		280	186.2743	4.9688	-3.1659	0.49688	5.2747	0.12	83.0
		290	191.2430	4.9688	-3.1659	0.49688	5.4154	0.12	83.5
		300	196.2154	4.9723	-3.0970	0.49723	5.5562	0.12	83.5
I		310	201.1806	4.9652	-3.2347	0.49652	5.6968	0.12	83.5
1		320	206.1458	4.9652	-3.2347	0.49652	5.8374	0.12	83.5
1		330	211.1040	4.9582	-3.3723	0.49582	5.9778	0.12	83.5
I		340	216.0657	4.9617	-3.3035	0.49617	6.1183	0.12	83.0
I		350	221.0274	4.9617	-3.3035	0.49617	6.2588	0.12	82.5
1		360	225.9891	4.9617	-3.3035	0.49617	6.3993	0.12	82.0

Meter Bo , 3008 Pre Test I , 4006 Post Test	Me x <u>T.ne</u> . 3008 Leak Chec / 4007 Leak Che	thod 5G Particul <u>M 3</u> Meter Y S = 0005 C MM k: <u>0018</u> CFM ck: <u>018</u> CFM CFM	ate Samp 0.9 a - 1 a - 13	3) 1 ing Dat 626 1.0 in 0 in 1	ta _ Filter Filter/ Hg Filte Pro Hg Pro	Unit: Run: Date: 9 Page:/ #'s: (F) <u>R</u> (O-Ring II er Size: <u>]]</u> be ID #: be Length	$\frac{2}{5} + \frac{1}{2} + \frac{1}$	A WA 7
Ti	me	Meter	Pit	ot	Tunnel	Meter	Gas	
Clock	Elapsed	Reading (m ³)	ΔP	Pg	Temp (°F)	Temp (°F)	Meter ∆h	Vac (in Hg)
1145	00	1.3200		and a start of the	and the second se	68,5	12	- 1.5
55	10	1.4653				69	.12	-1.5
1205	20	1,6084				70,5	,12	-/.5
15	30	1.7507				43	12	-1,5
25	40	1.8927				74	.12	-1.5
35	50	2,0353				75	12	-1,5
45	0	2, 1776				45	16	-1 <u>2</u> 15
55	70	2.3192				<u> 76</u>	o'd	-1,5
1305	80	2.4612				-11	12	15
15	90	26021				77	10	-110
25	00	9.4431				70	10	-15
35	10	2.8841				+0	12	-15
45		3.0252				19 19 C	12	-1.5
55	· 130	3.1064				F1.5	12	-11
1405	[40	3,3048		۲		00	12	$\frac{-1.5}{1.6}$
15	150	3.44.84				00	12	=15
- 25	100	2.2006				20012	17	15
33	170	20100	· · · ·			RI	12	-10
15		2.067d				31	12	-1.5
	190	7.0070)				

End of Test Weight F<u>471</u> R____ 4695 ,001

Meter Bo ,3008/ Pre Test I	Me x / 30085 Leak Chec	thod 5G Particul <u>Com 3</u> Meter 1 <u>,00005</u> ck: .0018 CFM	late Sam <u>x 0.9</u> @2	$\frac{13}{626}$	ta _ Filter Filter Hg Filt	Unit: (Run: <u>F</u> Date: <u>9</u> Page: <u>7</u> #'s: (F) <u>K</u> /O-Ring D er Size: <u>7</u>	Dotir PA 2 75/1 0f 2 BIA (1 D#: FE 1	<u>р.</u> <u>R</u> <u>Rev 12/15</u> R) <u>/O</u> mm
ر ما میں 4 Post Test	Leak Che) .0001 cmm ck: CFM(<u>a -13,</u>	<u>0</u> in	Hg Pro	be Length	:in	NA
<u>Ti</u>	me	Meter	Pi	tot	Tunnel	Meter	Gas	
Clock	Elapsed	Reading (m ³)	ΔP	Pg	Temp (°F)	Temp (°F)	Meter ∆h	Vac (in Hg)
1505	2.00	4.1504		and the second sec	- All Construction of the second	91.5	112	-15
15	210	4,2908				82	,12	-1.5
25	220	4.4313				82	.12	-1.5
35	230	4.5719	Ninatano P			62.5	-12	-1.5
45	240	4,7115	S			82.5	-12	-1.5
5.5	250	4,8531				<u>835</u>	.12	-1,5
1605	<u>1</u> 60	4,9935				835	12	-1.5
1.5	270	5.1340	illus provo			83,5	12	-15
25	280	5,2747			49 17 17 17	<u></u>	12	-1.5
25	290	5.4154	- C - C - C - C - C - C - C - C - C - C	· · · · · · · · · · · · · · · · · · ·		83.5	012	-1.5
45	(300)	5,5562	a contraction		- Chinese	83.5	12	-1.5
55	310	5.6968	6-14-14-14-14-14-14-14-14-14-14-14-14-14-	аў. 	1	03.5	,12	-1,5
1705	320	58374				03.5	, là	~1.S
15	330	5,9778			Salesana A	83,5	.12	-15
25	.340	6.1183		strander	777Ficture -	83	12	-1.5
35	350	6.2588			Rest avec	82.5	12	~1.5
45	(360)	63993		486 1997 1997 1997		82	12	-1,5
	70							·····
	80	<u>۲</u>			80 			
	90			ii.	ļ,			

BP

End of Test Weight F <u>- - - R</u>____ Pre Test Filter Tare Weight Check 28.52 300 28.51 360 00 60 F R <u>-4697</u> 285 28.4 120 49 .4695 $\frac{149}{4}$ Avg. = 29.496 in Hg" 240 28 ,0017

7 3,47

Unit Oph/MudA Run # E DA 2 Date: Date: 7 5 / 12 WST5-Form 9, Pg I, Rev 10/10	Time Bv Third Date Time Bv	1438 Am (53,2830) 9/10 1457 Jan					Time By Third Date Time By	1616 ESS (.4712) 9/12 1135 AM	3			Scale Room Environmental Conditions			0		2	ment		
nal Weights	ond Date	30 9/12					nd Date	11 9/7						%RH	5	48	Łħ	Son Con		
Constant Fi	tv Sect	\$ 53.26				. Weights	y Secol	L T		 		onditions		B DB	58 70	67	S& F	5	3	
heet #4-3: (Final Beak	Time B	LIS BS			. :	Final Filter	Time B	2052 9				umental C		By	201-2	ESS 50	Am SI		UT NOR	
ove Data S	Date	9/7 1		_			Date	0)/4.				om F.nvir		e Time	0 2052	7 1358	2 N30	NCH I	120	
Woodst	First	53,2818					First	21.44				Scale Ro	100	gning Dat	1 7/6	2 9/-	3 Q//	4	5 9/1	9
	ne Bv	500					le By	N GM						Ses						
<u> </u>	e Tin	21		- -		_	e Tim	120			+	┥┌╴		By	MIY			By		
m	0 Dat	2/6 /18-		_	- +		essic Dat	2 9/6				inal Weidh	0	Final Wt	53.283			Final Wt		
	· Int	53.					# Into D	16.h. t				Reweigh F	9	Beaker #	35			Filter #		_
	Beaker	35					Filter	F RB F						Date	11/10			Date		

Train 2/ Room Blank Woodstove Particulate Catch Processing She Woodstove Data Sheet #5 ASTM E 2515/ EPA M5G-1	et (73)	Unit: Optive Run: FPA 7 Date: 9/5//7 Technicians: A7 Revised 11/15 - Data Shee	1(14M Train 3 M F5S
Filters:	298.)		
Filter # (Front): Kb Bea	1ker #: <u>35</u>	Final Wt.:	53,1830 g
Tare Wt.: <u>4695</u> g ml	30	Tare Wt.:	53,2808 g
Filter # (Rear): De	siccant: Aceton	e Net Wt.:	<u>,0022 g</u>
Tare Wt.: g Be	aker Tare Wt,. (Check: 53.26	<u> </u>
Combined Filter Final Weight:	2g		
Combined Filter Tare Weight:469	<u>5 </u>		
Combined Net Catch Weight:OO	7 g		
Acetone Blank Calculation: Blank Date:	<u>12/19/16</u> Blan	k Beaker #: <u>6/</u>	_ Desiccant: 50 ml Acetone
Final Wt.: 70. 8352 g - Tare Wt.:	70.8353	_ g = Net Catch V	Vt.: - <u>0,000 = 0,0000 g</u>
Net Catch Weight: <u>,0000</u> g / 50 m	al Acetone =	g/ml A	Acetone Blank Residual Value
Acetone Residue Value Calculation:			
(nl Acetone) =	,0000	g Residue Value
Total Particulate Catch Calculations:			
Combined Filter Net Catch Weight:		,0017	_ g
Acetone Wash Catch Weight: <u>. 0</u>	<u>022 g</u>		
Less Acetone Residual Value: - <u>.</u> .	<u>осо g</u>		
Equals Net Acetone Wash Catch:	÷	,0022	g
Total Net Catch (Combined Filter + Acet	one Catch):	.0034	g
		3.9	_mg

.

·

-

•

1 · · · · · · · · · ·

-

Through:

							\									 	 		 	ŕ		 <u> </u>
	% RH	44	ЧB	3	£0 ₽	48	43	44	44	t.H	48	エノ	Eh	9H	4/							
	DRY BULB	ЧС С	64	12	ot	(de	02	-66	ot.	70	てら	59	59	64	65							
	WET BULB		S S	S,	se	حح	58	54	ы С	S B	56	54	54	53	52							
45	LINE VOLTS	00	119	119	118	119	1.9	118	118	120	120	118	119	120	6							
e: Sartorit el: CPA 22 24850860 vr: 7.15	Bb	29.56	28.34	20.75	28.36	28.39	28.44	2851	26.50	28.35	28.29	28.48	28.29	34.48	2846							
Scal Mod SN: Re	TECH	V.V.V	ATM	4 M	And	G55	555	ATTIM	ATT	ATM	ESS	ESS	ATM	APW	ATM 1							
rd Sheet	TIME	1935	ଖାର	1719	1718	512	323 1	1357	1130	2052	1558	1512	02/11	1434	928		 					
o QC Reco	DATE	E115213	11/06/0	21/tc/9	612817	71/21/7	13/17	1 <i>(5 / i</i> 7	7/6/17	3/6/17	7/2/6	٩/٠٠/٢٦	9/12/17-	3/10/17	4/11/12							
it 4-4 Scale	10mg Weight	0100	0100	0099	0100	0.010.0	0.0100	0010	D100	,0100	0.0100	0.0100	0.0100	0100	.0100			-			/	
Data Shee Scale 2	100mg Weight	. 1000	,0999	9999	0001	0.0999	0.000	1000	1000	1000	0,1000	0,000	1000	1000	1000							
Voodstove	1g Weight	00001	5365/9	99999	0,9999	1.0000	0,9999	19999	1.0000	1.0000	0000.1	1,0000	10000	10000	000001							
\$	10g Weight	00000	10.0000	10,000	4 9999	9 999 8	9.9998	10.0000	9.9999	00000	9 9999	19.9999	9.9999	79999	9.9999							
A .	100g Weight	129995	99.991	99992	99 9992	99,9991	2999,9992	99.9493	99.9991	99999 DP	199,9991	99,9992	2999.92	99.994	99,9991							
ы 6/35. Н	Recali- brated	No	2	No	0 No	00	NO	No	No	No	No	No	oN	No	No							
rom:	Level	N.	Yes	77	Ye.	Yes	Yes	Yes	Yee	<u>Y</u> es	Yes	S.	Xee	Yea	Yer.							

From: 6/25

rom:_ [hroug	1/1 zh: 6/1	11/06		Woodstove	Data Shee S	t 4-4 Scale (cale 2	QC Record	Sheet				Scal Mod SN:	e: Sarto lel:CPA 2485	<u>prius</u> 2245 50860
Level	Recali-	100g Wicht	10g	19	100mg	10mg	DATE	TIME	TECH	BP	TINE	WET	DRY	%
	DIALEU	менал	weight	weight	weight	weight					SETOA	BULB	BULB	RH
X	No	99.9992	10.0000	1.0000	0.100	00100	4/1/1	1942	AW	29.42	119	54	5 1 1 1 1 1	\$
rax	S S	१९ ९९९२	9.9990	0000	0.1000	0.0/00	4/2/17	1 HIG	ATM	28.47-	121	53	5	t.
× *	No	99991	9999	,9999	0.1000	0.0100	7-11 11 11	COLL	WW W	28,50	19	32	3	H 3
Nee.	No	१९ ९९९ २	10.0000	1.0000	$\frac{1}{2}$	9900,	名// 为 /ト	650	ATM	28.05	102	53.	5-0	47
And I	ŝ	999991	99999	10000	.0999	2010'	4/B/17	1139	Am	28.32	00/	SH SH	2	5
S)	125	99,999 1	9,9999	0000.1	:0999	,0100	4/3/17	1024	ES'S	28.23	6	St	591	48
		ac se	KUICES H	exe 1000	4/14/H	Post	オリット	> tm						
les.	Yes	1699,9991	9,9999	0,9999	0.0999	0.0100	4/19/17	040	ESS	28.60	811	53	64	1
Ves	07	1999,9991	0000101	1,0000	0.1000	0.0100	4/25/17	1217	ESS	28:35	11	51	61	49
Na Na	No	99,9992	10.000	0.0999	0,1000	0,0100	5/04/17	1610	Arm	28.26	119	R S	2	<u>6</u>
les 1	02	2640,09	9,9990	1,000	000110	0.0/00	5/246/7	16091	ESS	28.34	61	53	7	ð
3	° 2	99,999	99999	. 949 9	0.1000.	0.0100	5/27/17	1235	AW	10.52	120	50	-1-	4 A A
Ž	ŝ	99.9942	10.0000	9999	0.0999	0.0100	2112412	910	4TM	28.59	001	61	52	49
₽ ₽	No	99992	9.9998	9999	0.0999	0,0100	6/4/12	9th	ATH	20.36	6/1	- 19	43	494
		ACon	6 1011	m 6/5/1				1						
Z	°2	99,9992	9.999.9	1.0000	0.1000	00100	t1/5/9	1630	Am	28.52	120	हर	e	d d
Ż	NO	199.9991	9.9999	0,9999	0,1000	0.0100	0/0/17	949	Am	28.56	118	58	2	10
2	No I	99,4441	999444	1.000	0,)000	0.0100	21/12/0	1441	Arm	28.22	411	24	5	517
Ž	Å	19.9992	10.0000	1.0000	0,1000	0,0100	6/9/17	DSFI	4 m	19.19	120	54	es,	din h
Z	сN	99.9992	10 0004	1,0000	000/'0	00100	6/13/17	1848	Ann	28,27	t.11	55	66	ą
3	ŝ	99.9992	9,999,9	10000	0.1000	00100	thile	1705	ATTA	28.40	119	54	59	C+ T
त्रै	No	1999.94	49999	1.0000	0.1000	00100	6/15/13	2148	Am	20.34	118	Æ	69	48
ž.	2	44.49.9	0 000	1.0000	0.1000	0.0100	6/16/17	0 700	MI-H	20.3C	119	54	69	47
Ž.	202	1666.66	9.9949	0,9999	0,1000	0000	6/16/17	reger Solor	Arw	28.31	118	51	69	th
Xen V	, No	99 99 93	00000	0.4499	0/000	0.0099	11/11/	७२५	AVM	20,53	سی =	56	69	46
Ner		2664.44	2,2002	10, 99994	0.1000		L'Jucia	1500	びい	- 04 . Ec	- E-9-	Ç	r	all

÷

Data Sheet 4-4 Scale QC Record

$[5/I_{L}$ Woodstove Data Sheet 4- Solar $[5/I_{L}$ Woodstove Data Sheet 4- Solar $[2/S]/I_{T}$ Solar $[2/S]/I_{T}$ $[2/S/S/S]/I_{T}$ $[2/S]/I_{T}$ $[2/S/S/S]/I_{T}$ $[2/S]/I_{T}$ $[2/S/S/S]/I_{T}$ <
5 1.4 Would weight wei
5 / 12 - 100 - 10 - 100

-																									, 	<u>`</u>		
- -	<u>prius</u> 2245	% RH	d'A			49	hh	トコ	\$	4-1-	10	49	16	S	a a	10			7	49	49	ĝ	đ	g	10	46	18	
· · · · · · · · · · · · · · · · · · ·	:: <u>Sarto</u> 2485 5/1(DRY BULB	1	þ	671	67	E	150	72	64	67	13	200	17	66	00	5	·l		67	2	<u>1</u>	40	66	60)	69	P.	
	Scale Mode SN: Rev:	WET BULB	3	29	ડ્ય	56	53	24	60	53	53	50	56	20	55	20	بلر ک	t		56	ور س	50	5g	5	57	45	Ð	
		VOLTS	6	116	118	120	120	20	118	1.20	120	8	120	120	120	120	19	120	ß	6	120	119	भ	61	120	119	120	-
		BP	28,	28,30	<i>2</i> 8.43	26.50	29.53	28.44	28.33	28. 4G	26.35	28,32	99,49	38.19	28.32	28.55	28.72	28.43	13vb	38. H	98.4B	38.28	20.49	24.9C	28,35	20.43	26.56	
Ne Ne		TECH	Arm	4 W	MM	ATM	ATM	ESS	5 25	WLK	A7M	ATM	ATM	ATA	ÂN.	4 m	(AUN)	ATN	AM	AW	AW	47M	4TM	Arm	ES5	Am	A TW	1
	heet	TIME	2145	11	200	1048	2290	1413	457	910	929	19151	1057	100 2	523	M38	643	1640	1705	1846	1400	1740	17 R	1444	1132	1803	1028	1
	C Record S	201 L DATE	9/10	7112-11	9/18	9/19	9/19	128	3/30	0/2	10'/3	0/8	10%9	10/15	6/17	w/re	10/19	10/201	0/00	10/92	10/23	ro joy	10/35 1	10/26	11/1	N.P	11/3	
 	4-4 Scale Q ale 2	10mg Weight	0100	000	4010	0010	000	0010	0.0099	0.0100	0,0100	00100	0.0100	0,0099	0.0101	0.0100	00100	Peg 1/ V	0.0100	0.0100	0.0100	0.0.00	00100	00100	0.0100	0,010.0	0,0100	
	Jata Sheet - Sc	100mg Weight	000	80	1000	000	000/1	0.1000	0,1000	0.1000	0,1,000	0.1000	0,1000	0.1000	0.1000	0,1000	0.1000	1131-0	0.1000	00010	0.1000	0,1000	0.1000	0,1000	0.1000	01000	0.0999	<u> </u>
	Woodstove	1g Weight	1,0000	0000	0000	22444	1.0000	0000	0000	0000	1,0000	1,0000	.0000	b.94 4.9	10000	0.99999	10000	- Post	1.0000	00001	1.0000	10000	1,0000	10000	1,0000	0000	0.4999	-
·		10g Weight	10,0000	0000	99999	5	9.4940	6660	9.9999	00000	9.9999	9.9999	0,0000	10.0000	9 9999	000000	9.9999	TCES HEAR	9,4499	६ ९ ६९९	10.0000	9,9999	44999	00000	10.0000	9 विद र	99994	- (Z Z C G -
	10	100g Weight	00,9992	99.9992	4444	44.442	44.442	4.44	f9. 9990	99.9993	99. 4992	40000	46 8 4 4 3	44 9942	99.9993	99.999	99 9992	Deser	99.9998	49.94 43	99.4443	8999	44 4992	9492	2000.01	In your	44,4442	5 C C C S S
مر	1 1 C	Recali- Drated	2	2	0	2	0		3	No	2	02	S	°Z.	٥ <u>۲</u>	ع ع	2 2	Kes Kes	and the	- Tr	d N.	No	2	No	02	° 2	2	~
	From:	Level I	Aed Y	Sr/	Jag X	a ax	40/	S,	8	Ž	a	Zes Z	Yer	Aa Y	Yea	Z	Yea	3	Sa∕ ∕	वर्र	3	a X	23X	3 X	Yes	à,	17em	- India

• • • · · · · •

.

From: 2/24/16 Through: 4/1/16

Scale: Sartorius Model: CPA 2245 SN: 24850860 Rev: 7.15

% RH	42	45	45	16	46	8/7	4-1-	44	47	dg L	B T	46	0/1	201	48	H.		40	46	<u>1</u> 2	44	- <u>6</u>	48	37	43
DRY BULB	105	612	12	ę	15	57	0-0-	at	Let	<u>c</u> e.	105	61	0	2	50	4-9 9	1.4 F	65	101	51	09	es	00	64	2
WET BULB	55	24	ភ ភូទ្	58	58	54	t	ts	53	22	54	53	54	Sy	SH		11.57	54	53	50	44	54	50	48	S. B
LINE	118	10	02-	129	119	119	611	119	119	19	12	11 C	OPT	119	611	119	120	rt =	61	811	120	119	119	119	00/
BP	28,72	38,68	28,50	28.31	28.17	27.99	28.10	20.14	28,80	28,35	28,38	26,30	39.14	5818	2918	32.25	42 . OB	28.40	28.51	26.53	28.57	23,48	28.53	28.5H	15.00
TECH	E35	ATM	ATM	MTP	ATM	ATM	ATM	Am	E55	ATNY	CS5	AIM	ATW	Asm	Am	Amy	VAL. P.	Arm	ESS	Arm	A TWA	4 M	E55	ATM	Alm
TIME	1054	1850	0201	HH	2053	759	1251	2023	10260	2032	1537	1604	1516	1902	1632	0825	1015	1321	935	12150	12:20	1935	909	859	1542
DATE	2/24/10	2/24/16	8/4//b	3/4/16	3/5/16	3/6/10	3/6/16	3/0/16	3/7/10	2 1 10	319110	3/9/16	2/10/16	3/1/16	3/2/14	3/23/16	3/23/10	3/24/R.	3/25/10	3/26 /16	3/07 /16	3/28/16	3/29/10	3/31/14	4/1/10
10mg Weight	1010.0	0,0100	0.0100	00100	1 010'0	00100	0010.0	0/010	001010	0.0100	01010	00000	0.0100	00100	00100	0.0100	00100	0.0100	0,0099	0,0100	0.0100	0.0100	0.0101	00100	0.0100
100mg Weight	0.1000	000/0	0, 000	001.001	0.1000	0.1000	0.1000	2000	0,0999	00/00	0,0001.0	0.1000	0.00	0.1000	0.0999	0.0999	0.1000	0.1000	001.0	0,1000	0.1000	0.000	0.0999	0, 000	0.1000
1g Weight	1,0000	1,0000	1.0000	1.0001	0.99999	1.0000	0000	1.0001	0.000	0,4499	0,9999	1.0000	00001	1,000	1.000	0.9999	0.9999	1.0000	1.0000	1.0000	1.0000	1.000	0000	0000.1	1.000
10g Weight	10.000	100000	9.9999	10.0000	9.9999	9.9499	19.0000	10.0000	9,9999	9.4494	9,9999	9 9 99 9	000001	000001	9999.9	9.9999	00000	99999	1.9999	0000 01	99999	4.9999	4.4999	44444	7 4449
100g Weight	http: 4	96000	449945	44.4944	169999	99 9995	44, 4445	99,9994	14.9994	4994,494	44,4495	44.4962	4444	<u>u 4, 444</u>	6446,94	الله الله الله الله الله الله الله الله	99.995	9949,9495	99,9994	99,9945	302	99,4496	41,446	44, 1416	44. 44.95
Recali- brated	202	No	2 2	δŅ	ŝ	No	No	2	N.C.	οN Νο	NO V	0 V	2 2	eN 2	ur,	No	01	å	02	80	02°	PZ.	202	2	202
Level	Yes	Ž	a 2	Z.	N.	9 7	2	3	<u>i</u>	Zeb Z	3	al.	3	2 2	97) X		Nes.	az	Nev.	de Ace	<u>s</u>	2 	202	*	8

THE PRIMARY AIR CONTROL SETTINGS TO BE USED DURING TESTING ARE SHOWN ABOVE. SET THE AIR CONTROL SO THAT THE FORWARD EDGE OF THE CONTROL IS ALIGNED WITH THE LINES FOR EACH SETTING AS IS SHOWN ABOVE FOR THE LOW BURN SETTING.

OPERATION OF THE OPTIMUM DENSIFIED FUEL LOG STOVE.

The Optimum was operated according to the manufacturer's written instructions. (See the second page in the Manual Section.) As agreed upon, these instructions were changed for this test run. The primary air control (PAC) was adjusted for each test segment as per the revised written instructions.

COMMENT:

As noted in the cover letter to Dr Sanchez in the front of this report, this unit is the first unit that burns densified fuel logs to be EPA certification tested and that it combines features found in both wood and pellet stoves, making the unit an "outside of the box" hybrid". That in and of itself creates some issues for those who are conducting the tests because the unit is a batch, gravity fed appliance with a combustion air fan that has only 1 speed.

What follows is basically a repeat of the information provided under Note 1 on the first page in the Data Summary Section that is titled

WOOD BURNING HEATERS UNIT: 509 OPTIMUM Densified Fuel Log Stove

Test Method 28R for Certification and Auditing of Wood Heaters. Pall 110 mm TX-40 EMFAB TFE coated filters were required and used for this test run. (See letter from Stef Johnson, EPA/ OAQPS dated 22 August 2017. A copy of this letter is in the Introduction Section.)

There is no test run in Dry Burn Rate (BDR) Category 1 (<0.80 kg/h) because the unit's dry burn rate is controlled by its primary air control and combustion air fan, the density and size (diameter) of the fuel logs themselves, the amount of fuel remaining in the feed tube at any given time and how the fuel logs "settle" in the feed tube. The logs are gravity fed and logs can "warp" due to heat and moisture content and hang up in the feed tube which slows the DBR. The weight of the logs left in the feed tube also affects the feed rate because the weight pressing down from above is what causes the burning end of a log to disintegrate into smaller pieces, i.e., the more weight, the faster the disintegration, which allows more unburnt fuel to drop into the combustion chamber. The DBR data for this Reversed Test Segment scenario reflects this. When the "Low" burn test segment was started, the unit had been burning for a little over 75 minutes (~15 minutes for ignition on High and 60

minutes for Preburn on Low). Fuel logs were added to the unit before ignition, so preburn and the first part of the 180 minute Low burn test segment were run without any additional fuel being added. At 109:00 minutes into the test a 7.4 lb log was added because the dry burn rate had decreased substantially. Unfortunately by the time the log was added the stove had lost a considerable amount of "momentum", so the DBR did not pick up until a second 7.4 lb log was added at 159:00 minutes, just before the end of the Low burn segment. At 180 minutes the Primary air control was adjusted to the Medium setting and the Medium test segment began. The logs "dropped" twice during the Medium test segment. At the end of the Medium segment, the Primary air control was adjusted to the "High" burn setting. No additional fuel was added during either the Medium or High burn test segments.

So what controls the DBR in this unit is the combination of (1.) the amount of fuel left in the feed tube, (2.) the primary air control setting and (3.) the amount of time the unit has been burning at a given setting. It quickly becomes evident that the amount of time the unit has been burning at any given setting will initially see a heat build up and an increase in the DBR followed by a decrease in heat and a decrease in the DBR.

Woodstove Test Data Sheet #11Run#:IPA_2 Date:IPA_2 Date:IPA_2 Date:			Wood Density Density	etermination	Unit: Op (HMUM
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			Woodstove Test 1	Data Sheet #1	1 Run#: <u>15</u>	PA 2
Technician: $\underline{A^{2^n}}$ Rev 50 Wood Picce: Nominal Dimensions: X X Depth (D):					Date: 9 /	5/17
Rev \$1Wood Piece:Nominal Dimensions:XXDepth (D):	(Technician:	Am
We Weight:	·					Rev 5/10
Depth (D):		Wood Piece: Not	minal Dimensions:		<u>X</u>	<u>X</u>
Width (W):		Depth (D):				_cm
Length(L):		Width (W):				_cm
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Length(L):	cm		_	
$\begin{array}{c} \begin{tabular}{ c c c c c c } \label{eq:constraint} \end{tabular} tabular$			cm	Length \overline{X}		cm
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			cm			3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			cm	Volum	e:	cm ³
Room Temperature: *f Correction Factor:Meter Readings Corrected for temperature: YesNoNote:Record Moisture Meter readings to the nearest 0.5% or 0.1%Image: Descent of the temperature: YesNoImage: Descent of temperature: YesNoImage: Descent of temperature: YesNoImage: Descent of temperature: Yes			(D :	xWxL)		
Meter Readings Corrected for temperature: YesNo Note: Record Moisture Meter readings to the nearest 0.5% or 0.1% $ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Room Temperature	e:°F Cor	rection Factor	• •	
Note: Record Moisture Meter readings to the nearest $0.5\% \text{ or } 0.1\%$ $\begin{array}{c c c c c c c c c c c c c c c c c c c $		Meter Readings C	orrected for temperatu	re: Yes	No	· · ·
$\frac{\left \begin{array}{c c c c c c c c c c c c c c c c c c c$		Note: Record Mo	isture Meter readings	to the nearest	0.5% or 0.1%	
Top:%Bottom:%Avg % Moisture (Wet)%Side:%Scale:Leveled In $\overline{X:}$ %Vet Weight:g Dry Weight:g%% Moisture Dried Basis:%(I1 - (Dry Wt/Wet Wt)] X 100)Density =g/gcm³ =g/cm³ =(I1 - (Dry Wt/Wet Wt)] X 100)Density =g/g/cm³ =g/cm³ =(dry wt)(volume)Into Dryer $\frac{9}{5/14}$ $\frac{1956}{122}$ $\frac{140}{215}$ °FOut of Dryer $\frac{9}{1/9/16}$ $\frac{1956}{122}$ $\frac{215}{215}$ °F(Minimum Time in Dryer: 24 hrs.)Pellet Fuel Moisture Content DetermintationTare Beaker Wt. $\frac{192}{1224}$ g - $\frac{70}{70}$, $\frac{7368}{5368}$ g =Gross Wet Wt.Tare Beaker Wt.Dry Wt: $138, 3876$ g - $\frac{70}{70.5368}$ g =Gross Dry Wt.Tare Beaker Wt.Net Wet Wt.Dry Wt. $138, 3876$ g = $\frac{526128}{6}$ g(Dry Wt/Net Wet Wt.)] X 100		· · · · · · · · · · · · · · · · · · ·	Uncor	Cor	Avg % Moisture (Dry)	%
Bottom:%Avg % Moisture (Wet)%Side:%Scale: Leveled InOut \overline{X} :%Scale: Leveled InOut \overline{X} :%Zeroed: InOutWet Weight:g Dry Weight:gf% Moisture Dried Basis:%f(I1 - (Dry Wt/Wet Wt)] X 100)ffDensity =g/mcm³ =g/m(chr wt)(volume)Into Dryer $\frac{9}{1/8}/14$ $\frac{1956}{1522}$ $\frac{140}{140}$ oFOut of Dryer $\frac{9}{1/9}/12$ $\frac{1522}{152}$ $\frac{215}{215}$ oFPellet Fuel Moisture Content Determintation Tare Beaker Wt. # $\frac{60}{20}$ -72 , $\sqrt{3}$ ($\frac{3}{2}$) $\frac{1}{20}$ Wet Wt: $\frac{142.4224}{30}$ g - $\frac{70}{70}$, $\sqrt{3}$ ($\frac{3}{2}$)g = $\frac{71.80556}{3}$ Wet Wt: $\frac{142.4224}{3}$ g - $\frac{70}{70}$, $\sqrt{3}$ ($\frac{3}{2}$)g = $\frac{14.8508}{3}$ Gross Wet Wt.Tare Beaker Wt.Net Wet Wt.Dry Wt: 138.3846 g - $70.\sqrt{3}$ ($\frac{3}{2}$)g = $(1 - (Net Dry Wt./Net Wet Wt.)] X 100$		Top:		%	·	
Side:%Scale:Leveled InOut \overline{X} :%Zeroed:InOutWet Weight:g Dry Weight:g%% Moisture Dried Basis:%%([1 - (Dry Wt/Wet Wt)] X 100)%Density =g/g/cm³ =g/g/(dry wt)(volume)Into Dryer $\frac{9/5/14}{9/5/4}$ $\frac{79}{(5/14)}$ $\frac{7956}{1522}$ $\frac{740}{215}$ $\frac{740}{215}$ %Minimum Time in Dryer: 24 hrs.)%Moisture Content DetermintationTare Beaker Wt. $\frac{60}{79}$ Wet Wt: $\frac{142.4224}{9}$ g - $\frac{70}{70}$ $\frac{5368}{568}$ g = $\frac{71.88556}{9}$ Gross Wet Wt.Tare Beaker Wt.Net Wet Wt: $\frac{138.3876}{9}$ Gross Dry Wt.Tare Beaker Wt.Moisture Wet Basis: 5.6128 %%[1 - (Net Dry Wt/Net Wet Wt)] X 100		Botto	m:	%	Avg % Moisture (Wet)	%
$\overline{X:}$ %Zeroed: InOutWet Weight:g Dry Weight:gT use analyfical bolance% Moisture Dried Basis:%([1 - (Dry Wt/Wet Wt)] X 100)Density =g/g/cm³ =g/mail(dry wt)(volume)Into Dryer $\frac{9}{75/14}$ $\frac{9}{52}$ $\frac{7956}{215}$ Out of Dryer $\frac{9}{7/9/14}$ $\frac{7}{52.2}$ $\frac{740}{215}$ °F(Minimum Time in Dryer: 24 hrs.) $\frac{1}{72}$ <		Side:		%	Scale: Leveled In	Out
Wet Weight: g Dry Weight: g Wet Weight: g Dry Weight: g ([1 - (Dry Wt/Wet Wt)] X 100) Density = g/ (rolume) Into Dryer $\frac{q}{s} \frac{1}{s} \frac{1}{t} \frac{1}{\sqrt{956}}$ $\frac{1}{245}$ or f twend us Out of Dryer $\frac{q}{s} \frac{1}{s} \frac{1}{t} \frac{1}{\sqrt{956}}$ $\frac{1}{245}$ or f (Minimum Time in Dryer: 24 hrs.) Pellet Fuel Moisture Content Determination Tare Beaker Wt. $\frac{\# 60}{2} - \frac{70}{5368}$ g Gross Wet Wt. Tare Beaker Wt. Net Wet Wt. Dry Wt: <u>138,3876</u> g - $\frac{70}{5368}$ g = <u>67.8508</u> g Gross Dry Wt. Tare Beaker Wt. Net Dry Wt. % Moisture Wet Basis: <u>5.6128</u> % [1 - (Net Dry Wt/Net Wet Wt.] X 100		$\overline{\mathbf{x}}$		%	Zeroed In	Out
Pellet Fuel Moisture Content Determination Tare Beaker Wt. # $\underline{60} - 70, \overline{5368}$ gLo gPetlet Name: N. Ide h. Energy Log Pellet Manufacturer: N. Ide h. Energy Log Pellet Grade: $\underline{N/A}$ Wet Wt:142.4224 g - 70.5368 g =	· · · · · ·	% Moisture Density = (dry Into Dryer Out of Drye	e Dried Basis: ([1 - (Dry Wt/Wet g/ g/ (vol wt)) (vol methods)) $(vol methods) (vol	<u>wt)</u>] X 100) cm ³ ume) <u>me</u> <u>I</u> 756 <u>22</u> n Dryer: 24 hrs	=g/cm ³ <u>emp</u> 140 °F twrned u 215 °F .)	4
Pellet Fuel Moisture Content Determination Tare Beaker Wt. $\frac{\# 60 - 70, 5368}{g}$ g Pellet Name: <u>N. 1de h. Energy Log</u> Pellet Manufacturer: <u>N. Ide h. Energy Log</u> Pellet Grade: <u>N/A</u> Wet Wt: <u>142.4224 g - 70.5368 g = 71.88568 g</u> Gross Wet Wt. Tare Beaker Wt. Net Wet Wt. Dry Wt: <u>138.3876 g - 70.5368 g = 67.8508 g</u> Gross Dry Wt. Tare Beaker Wt. Net Dry Wt. % Moisture Wet Basis: <u>5.6128</u> % [1 - (Net Dry Wt./Net Wet Wt.)] X 100						
Wet Wt: <u>142.4224</u> g - <u>70.5368</u> g = <u>71.8056</u> g Gross Wet Wt. Tare Beaker Wt. Net Wet Wt. Dry Wt: <u>138.3876</u> g - <u>70.5368</u> g = <u>67.8508</u> g Gross Dry Wt. Tare Beaker Wt. Net Dry Wt. % Moisture Wet Basis: <u>5.6128</u> % [1 - (Net Dry Wt./Net Wet Wt.)] X 100		Pellet Fuel Moistur Tare Beaker Wt. <u>#</u>	e Content Determintat 60 - 70, 5368	tion L	o g Pellet Name: <u>N. 1 do</u> 9 Pellet Manufacturer: Pellet Grade: <u>N/A</u>	N. Idaho Energy Log
Dry Wt: <u>138.3876</u> g - <u>70.5368</u> g = <u>67.8508</u> g Gross Dry Wt. Tare Beaker Wt. Net Dry Wt. % Moisture Wet Basis: <u>5.6128</u> % [1 - (Net Dry Wt./Net Wet Wt.)] X 100		Wet Wt:	. 4224 g - 70	5368	$g = \frac{71.8856}{1.8856}$	g
% Moisture Wet Basis: 5.6128 % [1 – (Net Dry Wt./Net Wet Wt.)] X 100		Dry Wt: 138.	3846 g - $70,9$	5368	$g = \frac{64.8508}{100000000000000000000000000000000000$	g /
% Moisture wet Basis:% $[1 - (Net Dry Wt./Net Wet Wt.)] X 100$		Gros	s Dry wt. Iare Be	aker wi.	OZ	
$[1 - (Net Dry wt./Net wet wt.)] \times 100$		% Moisture Wet Ba	1818: <u> </u>	6 180	70 Z	
			[I – (Net Dry W	t./Net Wet Wi	.)] X 100	

MYREN CONSULTING, INC. ASTM E2779 Densified Fuel Heater Eqns. Forms/ Densified Fuel Stoves/ Eqns. Rev 6. 4.20.17 P. 1 of 2

Unit:	Optimum	
Run #:	542	_
Date: _	9/5/12	
Tech: _	Am	_

ASTM E2779 EQN 1: Kilograms/ Pounds of dry fuel burnt, db (Revised)

Note: EQN 1 assumes that no fuel will be added to the unit while it is being tested. That was not possible with the Optimum because of the unit's dry burn rate, i.e., the stove will run out of fuel and go out if one does not add fuel to the unit sometime during the 6 hour integrated test. So the M_{Bdb} (the dry mass of the fuel burnt) equals the total of the pounds of fuel burnt (M_{Bwb} during each 5 minute sampling interval, in this case 18.9 lbs., minus the moisture content, in this case 5.6128%

 $M_{Bdb} = (M_{Bdb})(100)/(100 + FM)$

FM = average fuel moisture content of test fuel, % wet basis, 5.6128%.

 M_{Bdb} = weight of the fuel burned during the test run, dry basis, kg(lb), 18.9.

$$M_{Bdb} = (19.1 \text{ lbs})(100)/(100+5.6128) = 18.0349 \text{ lbs} / 2.2046 \text{ lbs/ kg} = 8.203 \text{ kg}$$

ASTM EQN2: Kilograms/ Pounds of Dry Fuel Burnt During a Test Segment (S1), db

Note: Again, do to the way this stove burns and the need to add fuel at some point (or points) during a test run, so the M_{Bbdl} (the dry mass of the fuel burnt during each sampling interval) equals the total of the pounds of fuel burnt during each 5 minute sampling interval for each test segment minus the moisture content, in this case 5.6128%

MBSidb = (MSSiwb - MSESiwb)(100)/(100+FM) (Revised)

i = test run segment in accordance with the "Reversed Test Segment" sequence found in 9.4 Table 1 that was agreed upon for this test run.

 Test Segment 1 (Low): 0-180 minutes:
 ×

 MBS1db =(
 7.3 lbs.)(100)/(100+5.6128) = 6.9120 lbs/ 2.2046 lbs/kg = 31353 kg

 Test Segment 2 (Medium):
 180-300 minutes:
 ×

 MBS2db =(
 7.2 lbs.)(100)/(100+5.6128) = 6.8174 lbs/ 2.2046 lbs/kg = 30923 kg λ

 Test Segment 3 (High):
 300-360 minutes:
 ×

 MBS3db = (
 4.6 lbs.)(100)/(100+5.6128) = 43555 lbs/ 2.2046 lbs/kg = 1.9757 kg \checkmark

MYREN CONSULTING, INC. ASTM E2779 Densified Fuel Heater Eqns Forms/ Densified Fuel Stoves/ Eqns. Rev 6 4.20.17 P. 2 of 2

Unit:	Optimum
Run #:	epa 2
Date: _	9/8/17
Tech: _	ATM

ASTM EQN 3: Average Dry Burn Rate BR (DBR)

BR (DBR) = $(60(M_{Bdb}))/\Theta$

BR (DBR) = Average dry burn rate over the full integrated test run, kg/h (lb/h), where

 Θ = total length of full integrated test run, min.

MBdb = the total mass of fuel burnt, dry basis, kg (lb.)

BR (DBR) = (60($\frac{8.203}{\text{kg}})$ / $\frac{360}{360}$ = 1.3672 kg/h ×

ASTM EQN 4: Average Dry Burn Rate (DBR) over a Test Segment i, kg/h(lb/h)

BR (DBR)si = $(60(M_{Bidb}))/\theta$

BR (DBR)s^{*i*} = Average dry burn rate over test run segment *i* , kg/h (lb/h) where

Os = total length of test segment i, min.

MBIGG = the total mass of fuel burnt dry basis, kg (ib.) during each test segment, i.

Test Segment 1 (Low): 0-180 minutes BR (DBR)_{\$1} = $(60(3,1353 \text{ kg})/180 \times 1.045 \text{ kg/h} \times 180-300 \text{ minutes})$ Test Segment 2 (Medium): 180-300 minutes BR (DBR)_{\$2} = $(60(3,0913 \times \text{kg})/120 \times 1.546 \text{ kg/h} \times 120 \text{ kg/h} \times$

		•														
Prebi	urn Star	t Wt.	-	Lbs. Un		lhs		Pre Bu Record	ırn Data Sheet #13	Un		MANA W	hnician(Date: 4	13/17	
Test	Start W1	t Range		· · · · ·		lbs.				Pa	ge: 1 of		WST2-]	Form 16	, Rev 6/11	
Daro	. Fressu	27 21	≥/ T/C#		7	ß	4	ŝ	6	٢	÷	6		22	Hot Box On	
Mün	ute/O	Scale Weight	Burn Rate	Stack	Stove	Left Side	Back	Right Side	Bottom	Firebox	2 nd Burn Catalytic	Room Temp	Static	Strate ()	Comments	
0	1045	533.8	0.0	145		e - *- · · ,		đ				10 E	-,023	168	Primary Air Set At Lo.D	
S	ŝ	533.5	હ	148			ana na sa	ster son			a or analogications	3	02	7	Secondary Air Set At N	
10	ß	53.1		153		••••••••••	1	e ann amh	×			- Inon	.0251	183	Fan: O J	
15	1100	5.32. 6	ŗ.	158	s 	4. 34 1. and 3.	v == y + -g) ;	الولوم من	- 10-00 -00-00			Co-1	- 025	189	Tunnel on at: 110 6	
20	S	532.2	7	164				مىرىيەر يەرىپىيە مەرىيەر يەرىپىيە	··			٢٩	- 027	194	Buckets Iced	
25	Q	531.9	ų	170	، بور مربع در	-F 64 .07194	121.2 VV 1487.2*	- 	12 • • • •	-	ji -slaž <u>y</u> - paljis 75	7-07	023	96	Analyzers Spanned	
30	2	531.5	7	175			are and billing			*****	s Malifetta	les-	-029	202	Pumps Turned on at: 1/2/0	
35	2	531.3	9	5				. 249.74				3	029	203	$\Delta \mathbf{T}$ $\Delta \Delta \mathbf{T}$	
40	Ś	530,91	Ŀ	2 8			-3+	1 8 - 44 - 5 - 5	الم الم		:	గ్న	- 029	204		
45	R	570.7	4	661	1. 		~~~~~		(*******			2	- 030	206		
50	35	530.3	7	181	·			· ·			+270%-	52	029	207		
55	40	530.0	પ	182		rearbilition			1 Fee	4 (may + 42 -		102 102	029	209	Tunnel AP	
Δ	V			1						-9.96 (8 9.17.9	1		- the second sec	X	Probe In Tunnel	
09	114S	529 6	Ţ	28			2-16-18-95-1		and the second sec	., 1830 Typ	when	lelo	-1030	210		
65											ľ					,
70																
75							-									
80																
85											-					
90																
95																
100													-			
105			-													
110																
715					 											

.

		eri-	ş l	24			8	00	6	5	2	6.7	5	م			1		0	2	ar	2	0	2	2	r	5	~	a	00	 .
	1	2C \$2,								0	~	1 00	, Q			61			0		7		5	1	占	5	h	5	5	۲ و	<u> </u>
		Notes	10	4	i a	12	Ā	22	224	221	22	2	() () ()	22		0	128) \$	6	Ŧ	3	14	1	T		3-	T	7	4	3	¦
d d	С С С	3 KACE	e C	1	Ē	-		Ч	42	Ş	47	21	42	42		H		# 15	Leto	1 9	3	70	7	2	5	14	С С	10 17	び	76	· :
Run G	ATA												· -			F	Part. Cond.	#14	57	20	С Г	39	39	50	39	0h	40	0h	ţ	40	
Ľ	ician(s)	pacity		V			4 4	1	ei art	5		2		5		-	Part. Filt.	#13	67	6 8	70	71	72	73	HC	75	75	76	っっ	77	
1 5	Techni	0		<u>s</u>	0	- C	0	.0	20	2	0	Ŏ	_		9	and the second se	C Gas Impin	#12	32	32	33	3	Ŝ	33	R	R	33	23	R	33	
te 9 /	v @ 1.5"	Stack Stat Droce	~ 0 2		02	0	~ : 02	207	0	· · ·	1 0 1 1 1		03	-103	<u>)(</u> . 35		C Gas Box	#11	212	213	225	226	24	25	27	220	228	57	26	26	
Q	as Flov	Temp	<u></u> <u></u> <u></u> <u></u> <u></u>	202	82	186	981	30	T	5 5	5	20	197	19	(218H)		10	5 2	5	5	۰۰ و	6 6	2	2	00	30 e	~		2	
	"Hg (Gas Bal	(33, J)	31.4	25.7	30.8	22.4	18.0	35.2	20	136	15	28.7	22.9			L qu	# 6	s S	60	ری ور	10	00	00	9	00	5	00	00 	7 18	<u>E</u>
N G W	2	8%	R	19	(2)	23	3	3	2	¢.	5	Ŧ	27	गतः		14	a Ar	#	٩	و_	9	0	٦	2	ĕ	ē	Ċ	٩	'9 	<u>ا</u> د ا	<u>B</u>
John /	28.	c C0	2	. (9	127	22	3	ي ت	2	9	Ð	3	-2-	1210		2	Fr. 2nd	8#	_		~			<u>.</u>	-0			_			-
Unit	Pressure	° 2°	H.123	4.89	3.87	374	3.85	3,92	3,81	H-181	4.87	4.55	ماما.1	4.85		283.6	Firebox	L#	*	191 <u>-201</u>									_		
	rometric	°.02	0.10	5:96 1	126.0	7.08 1	20.0	1 5 9.0	7.051	50.0	199.0	<u>8,16</u>	e.16	5,96		~	Bottom	9#		м. та ,			~~~		a	97 Mile da 1973					-
-	Ř	¢.	257	231	170 (276	0	2120	275			OF S	.234	152	1 44 A		Right	#2		a		*****	فده عدوريو		ند امنون			-			
cet #14 P	T	Burn Rate	0.0		e N	2	1	40	v	4	3 -		2	7		~ 5WV	Back	#4	n=== 1 + 2)	476 487 9 - 198	270058 A				A Millerije Age			-145 ¹ 111 (m	the sector		
Data Sh		Lbs. Left	19.1	18,9	10	184	0	17. 8 1	51/1	5 5 6	20	2	ه و	<u>भ</u>	-	13 20 20	Left	₽ F							ron 4 Feb	. V.C. N.G. (1997)	5151-679 B.227				
 Iting Inc	525.	Scale WT.	529,6	529.4	529.2	528.9	528	52815	222	227.0	227.1		52.7.1	226.7	1	3,0 1	Top	#2		t-itiek ant			-	L		8407 997					
a Consu	Ind Wt.	Ð	145	B	6	2002	50.		<u>.</u>	81			5	2			ne	ອ	£	R	22	0021	SS S	04			26	2k	λ <u></u>	5	
Myrei	Test	E/T Min	0	05	9	15	20	5	₽	<u>ମ</u> ୍ଚ ବ	1	6 6	ຄູ່	6 E	TOIGI		Ë	Min	•	S) ;		<u>a</u> [8	20	ç	3	ເ	40	6		2 2 2	1 otal

I

				21	0	0.0	00	0.00	-8,0	0.00	000-	-8.0	0 0	0	0 0				H H	79	-79	79	Bo	8 0 0	18	6	22	83	94	84	84	
			es S	231	232	233	235	2360	237	237	237	235	- 162	232 -	231 -		~		#17	27	97	46	91-	L L L	ť)	5	1,7	Т Л	47	47	47	
	N N N	73000	* Schot	5 2	43	2	5	દ્ય	1	17	T T	H-H-	5 44	11	HH .s		2	Laer Laer	# 0	77	17	77	84	73	200	61	56	79	79	79	80	``
	Run E			Latin 1		030000							524.1 - 531.	Childed Lo	21416			Part. Cond.	#14	14		41	40	41	Ŧ	11	7	-11	42	42	74	
	17 nician(s)		Opacity	5	3	50	5	1	5	41		• •	1	-	н		1	Part. Filt	#13	77	ア	72	73	75	210	5	78	700	78	79	79	
	1 / 5 /		Static essure	(23)	031	150	150	120	030	030	031	030	030	020	30	399	art monthly Billion	C Gas Impin	#12	33	55	34	33	33	33	34	34	र्म	34	34	34	
	Date G	Stack	emp Pr	8	19	; 8	• lc	02	: 2	03 -	3	20	0	20	- (00			C Gas Box	#11	226	226	224	226	226	2260	226	2260	227	226	225	223	
	le Gas]			9 19	1 10	3 2	7 20	6	0 V	2 2	0 20	1 26	2 2	5	2 2	ઉટ્મ	and the second se	Tnl.	#10	90	99	6-	9	20	26	92	26	92	r B	63	<u>6</u> 25	
	Mu W			30 20	39 19	0/ 120	3 28	27 28	27 21	33 18	31 18	34 14	31 14	53 12	19 11			Amb	6#	5	lo B	Ba	e e	က္ခ	89 9	മൗ	89	(0)	69	202	ବ୍ର	(820)
	28.5			30		. 20	123 12	22	1. 12.	33	121	134	31	. 33 .	1, 1, 1, 1,			Fr. 2nd	8#	- "1	5 0	w -	1	- (* 10. 1344 - 10. 13	14 M MINIMU -	10. 9 14-00574	a orașe a		1			
	Unit	' c	5°2	4.53	3.69	3.19	14.22	1.50	5.12	トレン	15,20	13.9.1	16.38	6.60	12:51			Firebox	<i>L</i> #		10,75	13,60				م میر میں	× c 0+24					
	of arometric	5	%	le 210	7,060	7.39 1	19.01	6.33	5.68	10.9	5,58	H.80	ц,4 0	4.18 1	5.48			Bottom	#6		105 -	01			.			< +#≠\u: ;	• • • ##== E4 .#	in		
۰.	B		<u>د</u> ر ۲.	243.	. 275	. 283	257	246	270	223	v12.	. 185	ومار.	09I.	212			Right	#5					Pr" =	· • • • ·		-	· · · · · · · · · · · ·	-	·		
	neet #14 I ∆T	During	Rate		Ś	ų	ч	Ч	5	N.	-	n	Ó	e' K	ι, Γ	5		Back	#4	524.3	+ <u> </u>	531.4				فر که مصفقون						
	Data Sl	1 1.6	Left	16.1	15,8	15.5	25	0	<u>ت</u> ت	ц Г	=	<u>30</u>	3.8	30	<u>5</u> 3			Left	ŧ3													
·	S25	Sealo	WT.	526 Le	526.3	526.0	525.7	525.5	525.0	524.7	224.6	524.3	524.3	531.5	531.2		-	Top	#2	-							•					
	en Const End Wt.	ime	Θ	1245	B	55	1300	Ś	2	5	2	5	Ŕ	33	ç			ime	Θ	SHZ	R	R	38	8	<u>0</u>	6	2	52	30	52	0	
	Myra Test	Ĩ	E/T Min	60	65	70	75	80	85	8	95	100	105	110	115	Tota		H	E/T Min	99	65	2	5	8	85	ŝ	95	100	105	110	115	Tota

			345	à y	30	0	0	0	0	0	0	0	0	5	۲.	5		2	L.	1-	34	2	34	2	5	2	2	E	5	34	Ĩ	Ň	
-			el N	->	1	00	00	· 00		90			101	- 8	100	2		, ,					0	3	2	2		100	2	00		22	
-	<u>~</u>		Б°	ง เร	229	224	22	216	21	202	202	Σ Δ	195	61	0	<u>6</u>			a de	Ŭ	1	5	7	1-1-	T	7	T T	3	34	5	34	48	
-	040	FS -3	Prov	0100	ЧЧ	ЧЧ	ЧŚ	Чς	45	ЧS	51	45	57.9 YS	15 415	1	37		77	Part.	# N	<i>8</i> 0	81	ß	9	18	18	Ŋ	0	0	18	82	82	
		ATM											30.5-53	Added Los	7.41105			Ē	Part. Cond.	#14	42	42	-42	42	42	42	5 F	42	42	42	42	43	
-	<u>r</u> t	vician(s)		pacity	J	Ч	40		11	kł.	11		• •	11	11	1.		F	Part. Filt.	#13	44	80	$\mathcal{B}_{\mathcal{O}}$	80	BI	81	ß	ß	81	6	81	ā	
	N.	5" Techn		ssure	000	028	28	120	210	26	25	25	22	22	220	222	(L 02	diama di managina di managi	C Gas Impin	#12	34	34	34	34	<u>S</u> V	34	34	34	34	35	35	34	
	Ċ Z	low @ 1.	Stack	I Pre	7(5 -	((3 5 60	0	0.0	8 - '	<u>- 0</u>		1 - 2	- 1	0 (0	E C		C Gas Box	#11	222	223	223	224	225	225	225	225	225	225	225	225	-
	-	Gas Fl		# [#	<u>.</u>	916	19	3	30	181	5	2	175	L D	ر ا خ	5 17	510)		Tnl.	#10	63	S	5	33	25	22	22	92	22	25	92	25	
	V.	"Hg	Gas	Bal	10.4	0.0	30	ي. رو	3	2 Q	ы Т	ŝ	36	(2) (2)	15.	16.9			Amb	6#	¢	Ő	0	20	مر	م	71	71	20	20	0 V	707	89
	` Z		CO	%	47	9	Ú 12	5	5	8	8	β.	50	ŝ	7	015,			p				•				-	,	+	3		, (3
		204	co	×.	42	000.	26.	LÊ.	5	60	О	ନ୍ଦୁ	10	55	141	<u>ok</u>			Fr. 21	8#					· a lease a			Ti-1	(1993) (200 (1997)				
:	T Imit	c Pressure	02	%	14.38	12.61	17.86	17.08	17.43	7.92	139	17.99	18.07	4.74	4.45	14.70		S	Firebox	Ĺ#	·* • .			4 ' 1	. .		· e. ye.			230 milet - V		jer	
1	Ľ	arometric	c02	%	4.35	3.03	2:72	3,28	3.03	2.57	3,10	2.55	2.52	10.9	le.28	(e.06		80 min	Bottom	9#		** == a	ι aι.		.			***	, at here a	: - 10 - 1 0 - 10	1.000 (1.000 (:4	
	"		co,	<u>۷</u> .	167	11	.102	. 128	114	0960.	Ľ	ંબેડ	400,	-222 -	244	.135		一約	Right	#5	-				WFM (1997)			⁷⁰⁷⁵ 884 (1999) - 1999 - 1999	***.1844	ne			
	1 V #1 V E	NT	Burn	Rate	-	_			0				- <u>`</u> -` *	-1-		ej	1,5	med in	Back	#4	1. n. 1			n - ¥'7		·• ₩ \		-Transver	804-3-46 47 7				
	Nata Cl	8	Lbs.	Left	3.2	13.1	<u>3</u> 0	2	2.4	12,8	12.7	12.6	12.5	2.1	12.0	2-1		and the	Left	#3	*					** -**	* Norver 1*						
	ltina Inc	575.	Scale	WT.	531.1	531.0	530.9	530.B	530.8	530.7	22016	230.5	537.8	537.4	537.3	537.1		3 155 W	Top	#2	_			, a.90		p -	• • •	i ye metritî î	,,	*47 T + 2	rta		
		nd Wt.		อ	उपट	ß	55	1400	5	õ	5	200	22	R	N N	S.		<u>-</u>	ne	Θ	25 S	S	۶J	8	5	ó	5	2	2	8	50	승	
	Mww	Test E	Tin F/T	Min	120 1	125	130	135	140	145	150	<u>155</u>	160	165	170	175	Total		Tin	E/T Min	120	125	130	135	140	145	150	155	160	165	170	175	Total

•
				<u> </u>	1	1.	<u> </u>	Т		T	1	r –	Γ	1	1	1	T_		1	[T	.	<u> </u>			1	1	7	T		т	т	τ-
					1		200	2 0 7 0 7 0	000		00	0	-89	89	6	0	0		f	L'and	4	8	85	28	ଅନ	913	96	31	5	2 1	20	2	9 00	1
	\sim	·	1	5) (0) ~ 8	194	000	2010	212	216	222	226	230	232	233	233	235		12	A G	410	49	<u> </u>	48	49	49	49	49	67	8	ß	22	ନ	
-		d	B	Ches-	CondNote	Ч5 Г	<u>۲</u>	10	¹ 2	1 2 2	5	11	<u>م</u> ار	۹ <u>۲</u>	9 7	9 7	46	¢.	L L	Pact Ry Ley	4 S	82	82	82	83	83	Ê	B	84	84	84	84	84	
		EPA	ATM	Ser.	λ. 	FPAL /													F	Part. Cond.	#14	43	43	Ŷ	43	43	42	52	44	44	117	11	Ţ	
		T Rui	ician(s)		pacity	J.	1		. 11	1.	1				3		1	 	t	Part. Filt.	#13	82	θ^{2}	92	8	82	83	<i>2</i> 3	23	83	B	83	83	
		51.1	, Techni		ic ure O	2	 	5	و ا	6	5	8	30	30	60	06	ο	G		C Gas Impin	#12	34	35	35	33	30	33	35	35	35	ž	36	36	
		, q, /	w @ 1.5	Stack	p Stat Press	- , 02	0	02	02	02	02	1 - 02	202	5 - 0	1 03	(-, o	002	Y (: 5i	Character in succession	C Gas Box	#11	225	225	0720	227	227	228	229	230	250	230	229	229	, <u> </u>
		Dat	Gas Flo	ŀ	Tem #1	171	5	101	1 186	189	192	a	202	203	201	201	7 2 d	[23])	Tal.	#10	32	33	7	5	ЗŚ Г	5	36	20	5	97 2	Ľ,	3	
			""Hg	Gas	Bal	0 15.4	> 13.1	7 14 8	2. 16.4	22.1	\$ 20.9	P. L1 4	0 11.3	2 13,6	7 11.1	N N N	1 24.5			Amb	6#	70	ī ī	20	7	70	70	7	2	7	72	7		र्भन्र
		1 CLM	49	- U	} %	<u>ר</u>	Ŋ	4	7	<u> </u>	55	Ŕ	ц Ц	7	-	,42	Ŋ			pu			-					<u> </u>			-		-	
		Netoc	128.	8	\$.40	.50	. पप	547	30	સં	<u>ole.</u>	ß	-42	5	42	3			Fr. 2	*				** ** , o* 1 ₂₀		-31-14-1	·					ار ا	
-		Unit C	c Pressure	ó	%	14.58	91141	14.19	13,69	91.41	13.89	14.33	15.06	15,00	15.47	15,15	13,20			Firebox	#7	en			- 7 8	•)							*	
		54	arometri	co,	%	0,16	6.53	6.53	7,03	6.63	e.98	0.43	5	5.73	5,23	5.58	7.59			Bottom	9#						₩			- 10 part	-			
		4 of	B	c0,	`.`	. 239	254	.254	. 274	. 258	· 24.8	.250	218	222	202	216	296			Right	#5						*** + c in							
		teet #14 P	۸T	Burn	Rate	0	9	7	ત	Ŷ	4	n N	7	Ū.	4	Ŀ	_	2.9 ×		Back	#4			1040 U.S.				Te vag . (),				-		
		Data Sh	\mathbf{v}	Lbs.	Left	11 10 10	9	1.2	0	10.0	50	101	3- 3-0	9	5	0 0 5 (5. N			Left	#3													
		thing Inc.	\$15	Scale	WT.	537.1	530.9	534.5	5.36.2	535.9	126	535 H	535.2	534.4	524.7	534.3	534.2			Top	#2	_												
•		a Consu	End Wt.	ne	Θ	121	R	22	200 (02	0	<u>v</u>	20	5	en en	5	- 2 2			ne	•	142	R	22	ß	10	0	5	R	32		5	2	
		Myre	Test	Tù	Min	180	185	190	195	200	205	210	215	220	225	230	235	Total		Tin T	Min	180	185	961 ;	1 505	007	205	210	215	220	225	230	235	Total

				いたの		2)(ĴĆ)			-							AL	1	Ø	\overline{a}	00	a	00	හ	9		n	00			
			ł	4		0 ' 0	9	5	9	0	6	C	0		с С	9				99	Ø	â	<i>Q</i>	6 CD	00	\mathcal{D}	80	60	Ø	00	8	8	-
-		1	4	tes of	20	20	100	12	5	26	2	2	216	X	7 26	26		1002	144	*	ß	В	S	B	ß	5	চি	5	٥.	5	5	5	 -
		с Ф	522	S Rate		2	27	H Y	17	P (P	F	17	T	L L	1	5				V.	94	BH	84	84	84	\mathfrak{L}	84	100	80	83	85	85	1.
-			ATW.					10000						Sroved				-	Part. Cond.	#14	44	1-1-1	터너	부너	Ъ	НS Г	45	5	45	45	۲ ۲	ا ح	
		Ru	cian(s)	pacity) _		3		1.7		14		1	44			N 2025	Part. Filt.	#13	33	83	<u> 8</u> 3	જુ	83	63	84	84	84	94	91	84	
		-	Techni	ō 	are 2,)	2-	5.0	0	3		H	Ч	6	S	١٨	5	6	N	C Gas Impin	#12	36	ملا	36	36	R	36	36	36	20	340	36	36	
•		S N	<u>a</u> 1.5"	Stack Stati	Press			0	02	03	- 03	20	- 03	- 02	- 03	4.03	65-76	ļ	Gas a	#11	28	28	12	27	57	27	28	23	ĝ	8	29	62	
		Date	as Flow	Temp	14		22	27	220	224	622	228	229	230	229	229	2 love		η [.] C	[#]	3	2	2	2 6	4	2	0	0	0	0 2:	2	2	
			"Hg G	Gas Bal	5.0		00	4,2	32.5	4.8	5.2	5.8	21,0	7.8)	65	8,3			P T	#1	ð	57	5	ð	5	<u>д</u> Г	5	Ő	2	01	ğ	10	$\overline{\Sigma}$
				0%	21	5	55	1 1 2	87	Su	28	240 2	28	r F	370	33 1		g mut	Am	ŧ	7	2	2	72	2	2	2	72	2	12	12	7	F907
		drivice w	7017	< C		24	59	. les	. 28	.56	.28	126	23	ī.	Ŀ Ĺ	.23		ich Se	Fr. 2nd	8#	* ************************************	Persona -		anta da ferrar est	(404 x 81)	7-5000-0-17-	STRFF I	1.100 March 1	an initial				J
-	· (init Op	Pressure	°°%	3.02	2,42	173	11.40	ーレー	2,40	3,04	14,10	4,92	15,08	4.07	4.57		in med	Firebox	#1		n shaar	میرو میکند: ۸		د -رونادر	, , 2	ر و دهند	- <u>م</u>		****	ا نورونون	1. and 1.	
	. 1	י רי רי	arometric	°03 °	1012.0	7.34	8 99	9,21	9,09	8.26	して	الد، ما	5.88	SiSI	6,68	le . 21		120 M	Bottom	#¢			····,	~		·	5° 45-13-1	× 13 , ,				-	
	-	S of		< CO	302	2860	252	3101	356	323	303	2 lel	228	213	.260	241		mt m	Right	#2				·····	a ba 1 12 1. 3	a. 600 24	5. (g and)						
		eet #14 P		Burn Rate		J	T.	5	7	7	N.	<u>م</u>	2	4	ľ,	±-	ب رُکْ	nd sal	Back	#4				72 7 14 22			- 6 - 6 - 6		4-196-192 av 7/2		-		
		Data Sh		Lbs. Left	8 S	8	1.1	7.4	n 0	9.9	é.	0 0	<u>г</u> (г)	in In	3	0		t'f	Left	#3			545 A A		~~~~					_			
		lting Inc]		Scale WT.	533.8	523.4	533.0	532.7	532.3	531.9	<u>ə. 180</u>	53.3	23	S S	530. Lo	230.2	e		Top	#2											-	_	
		1 Consu		. 0	525	20	55	89	8	0	<u>ر</u>	2	เร	200	2			F	le	0	212	8	B	8	6	2	Ŀ <u>o</u>	21	2	30	35	<u></u>	
		Myrei T 224 F			240	245	250	255 1	260	265	270	275	280	285	290	295	Total		Tin	Min	240 1	245	250	255 1	260	265	270	275	280	285	290	295	Total

-

				121	.50	2	2	5	М	5	\sim	ω	ð	e-	s	~	a		m	te1	4									~				
			1	ぼう	43	- 9.	σ <u>,</u>	-9.5	o i	6-	- 9.6	6-	٩	ด้	ç	9	Ğ		$ \vdash$	A R	Ŧ	88	<u>&</u>	8	8	63	89	90	0 T	<u>م</u>	с С	6	$\frac{a}{0}$	
	\sim	1		500		267	283	292	300	309	314	320	326	33	334	337	342		エ	Pro Pro	井 つ	ե	رم ا	5	<u>F</u>	<u>J</u>	<u>lo</u>	5	25	5	22	n	ξη	
-	·	6 6	5	Page	Cont. Notes	5	47	47	L L	47	47	47	47	H J	f l	47	47		12	PART Filter	¥)S	62	8	BG	$\mathcal{B}^{\boldsymbol{\mathcal{L}}}$	$\mathcal{B}\mathcal{L}$	BL	86	дь	96	918	96	βω	1.
·		EPA	4 JW	53	1	- PAC/													1/	Part. Cond.	#14	416	R F	46	46	46	46	46	9/1	16	916	46	46	
-		Run	(s) m		ity	24										_			-	Part. Filt.	#13	84	84	B	8	B	ßS	ßS	95	80	ß	95	85	
			chnicia	 	Opac	J	1	11	-	:	11	1	1	\$	11	R. R.	1			Jas] pin	[2	2	9	~	2	و	7	7	2	n	2	2	7	
		5	.5" Te		Static ressure	034	030	el Eo	950	040	어니	041	140	hha.	-044	044	580	484		ш с	[#	ŝ	3	ŝ	ŝ	ŋ	<u>5</u>	ŝ	<u>~</u>	3	ŝ	$\frac{6}{3}$	ξΛ <u>ι</u>	
•		te 0/	ow @ 1	Stack) − 。	<u>-</u> م	4 -,	;	ი	2	۱	; 6	1 10	- 0	• ~		5		C Gas Box	#11	229	229	229	230	23	232	232	232	23	231	231	230	
		Dat	Gas Fl		Ten #1	220	24	125	26:	26	5 27%	8 27	28:) 28	230	28	29	324		Tnl.	#10	8	Ś	70	Ю Ю	106	107	108	80	6	108	8	0	
			$_{-}^{"}Hg$	500	Bal	21.7	17.9	17,4	28,0	$(H, \overline{)}$	33.8	3,08	19.1	6.8	<u>(6.2</u>	H'L	32.6		-	qu	6#	2	2	3	72	33	74	5 D	52	73	3	4	7	199
		a m	Ø	5	3%	ماتى	,43	49	30	ß	24	ş	SS	2	5	23	29			A h		2		<u>1</u>	1	,-	, 	7	/ ·) `			\overline{x}
		2047m	<u>28.4</u>	00	3.>	36	54.	-49	50	·50	121	125	55	94	47	32	29			Fr. 2ne	#8	*** s	`**∷ths⊒ :		9- 10 -10	¥1.8 as⊚	ninet vite affe	: 1500 (1673)	*******			، بروهمورين	19 0 -11	
-		nit	Pressure		5%	2,95	3,01	2,18	2.15	3,33	12.71	1.63	0,72	200	12,09	14.66	11.35			Firebox	#7	_{n -} sheathag		Yessin, L	"TGuarati-	গাঁবনালাত	Low Audio A	(q 35 cta X4	5.450%	And the second sec		هتبرد		
:		n t	rometric	2	5°*	7,81	1 144	9.51	8,64	7.36 l	8.11	9,19 1	9,94 1	8.24	7.61	111.0	9,44			Bottom	9#	P. Inc.	Times i a gen		ाः ज्यसः	¥ fe bizgrige	(2) je s Mile dra	ગુન્દ્વાન્ત્રાટ	* 43251ar	1780-1345 a	⁴ -Station			
-		<u>6</u> of	Ba		5°.	202	105,	323	338	. 297	-J.E.	006.	.390	. 322	. 297	137	.370			Right	#5	45 82 47.44		3 100 ('aloca to y,	ر میلید فقت م	5)	- Shawa	रेक डेब्लाक लाग्	*		anan mar	ا مور	
		leet #14 P	ΔT		Burn Rate	u)	ų	4	ر ح	4	Ň	, Ч	Ĵ.	h	ŵ	6.	نرا	4.5		Back	(#4	The second	i Parakana	1476-776-93		9100-00Te	1.27.34 III	in the sec	a san	*******			بو	
		Data Sh	2	1 52	Left	4.6	4.4	4.0	30	3.3	2 8 9	2.4	20	5	2	6'	2			Left	#3	5 mg 192 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20 mg 20	velato to s) brancister (میںجدویتر	-202 Bree	-100 MCA	,	2080-1A				-	
		lting Inc I	525	21-22	Scale WT.	529.9	529.7	529.2	0,120	528.6	528.1	527.7	527.3	526.8	5.26.5	526.2	53517	2		Top	#2	1	A3,60760	المقريعين	دم به جمعی									
•		Consu	ud Wt.	6	0	12	8	5	8	lo O	0	5	2	2	R	3	07			ae	0	(Juls	ß	ß	R	5	Q	15	20	22	30	23	5 0 7 0	
		Myren	Test E	Tim	E/T Min	300 V	305	310	315 1	320	325	330	335	340	345	350	355	Total		Tir	E/T Min	300	305	310	315	320	325	330	335	340	345	350	355	Total

<u>``</u>	- 2 Hd	1 555	73 flage 3th de C Chr. Notes 8 Trues	10 - 0/4 - 0/4 113 - 114 - 0/9								7					72 72 73	1. Fritter Cond Filter	1 本に 本に	0 86 52 89				-								
	Run F	1(s) ATN	ty			5											٣ ا ٣ ا	art. Part ilt. Cond	13 #14	1 HL												
	E .	' Technician	ic Opacit	e y	BU) Total	13 - 7:					-						1	C Gas Pa Impin F	#12 #	37 Q												
¢	ate 9 / S	Flow @ 1.5"	Stack emp Stat		395622	0.8 (-103	· 					-						C Gas Box	#11	230											-	
		Hg Gas I	Gas Bal	х С Т	5	<u>tā</u>												5 Tnl.	, #10	601	0/164	$\mathcal{A} \div \mathcal{B}$										<u> </u>
	Ŵ	"	°C0	1 2 2			J.		E									id Amt	6#	75	512	70.)									
	ofima 1	e 28.4	CO >	1			1 Segme	~	2mtrine									Fr. 2n	8#	******												
	Unit Q	ic Pressur	°2°	10 22			e thet	1	ning the	.								Firebox	L#	6-2076												
	[4	3arometri	°°,	a 4a			t duin		mt du									Bottom	9#	• *****												
	P_7_0		CO ²	220			S burn		hes bur									Right	#5	****												
	heet #14	AT.	Burn Rate	7			4.6 1		19.1							1.		Back	#4													
	c Data S	3	Lbs.	0)		7									:		Left	#3		*******											
	ulting In	. S2S	Scale WT		Ĵ							•						Top	#2		********											
	ren Consi	t End Wt	Time	1715	<u>}</u>											tal		Time	Θ	1745			2	(2	6	2	0	2	0	5	ital
	Myr	Test	E/T	Min 360	365	370	375	380	385	390	395	400	405	410	415	Tot			E/T Min	360	365	37(375	38(38	39(39.	40(4	41(41] T 0

WST6-Form 8 Rev 12/09

Post Run Audit: Point # Zero Span <u>Comments:</u>	By: Expect Meter 00.0 48.5	ed Resp DVM 00.0 , 485	00nse % 00.0 12.45	Audit I Actus Meter Ø0, 0 48,9	Ti Results al Respo DVM , 001 , 496	me: <u>18</u> Dinse % .1937\$ 12,59%	+ Conc. Difference + 0, 1987 S + 0, 1975 8	78 °1 4% +0.78 +1,185
Post Run Audit: Point # Zero Span	By: Expect Meter 00.0 48.5	ed Resp DVM 00.0 , 485	90nse % 00.0 12.45	Audit I Actus Meter 00,0 48,9	Tin Results al Respondent DVM , 001 , 496	me: <u>18</u> Dase % .19375 12,59%	+ Conc. Difference + 0, 1937 S + 0, 1975 B	78 °1 Δ% +0.78 +1.185
Post Run Audit: Point # Zero	By:	ed Resp DVM 00.0	oonse % 00.0	Audit I Actus Meter OO, O	Ti Results al Respo DVM + 00	me: <u>18</u> D nse % .1937\$	+ 0, 1987 S	<u>78</u> °1 Δ% +0.78
Post Run Audit: Point #	By:	ed Resp DVM	oonse %	Audit I Actus Meter	Tin Results al Respo DVM	me: <u> </u> 8 onse %	+ Conc. Difference	<u>78</u> °1 \
Post Run Audit: Point	By:	ed Resp	onse	Audit I Actus	Tin Results 11 Respo	me: <u>18</u> onse	± Conc.	<u>78</u> °1
ost Run Audit:	By:	<u>49</u>	·	Audit I	 Results	me: 18	36 Temp:	7 <u>8</u> °1
					·····		· · · ·	
			<u> </u>					
Comments:	48,5	.455	12.4-	> 48.0	1,485	12,321	9-0.12806	-1.03
Snop	UU.U	00.0	00.0	00.0) .000	.16869	1 +0.16869	+0.67
π · 	Meter	DVM	%.	Mete	r DVN	1 %	Difference	Δ %
Point #	Expe	cted Res	ponse	Ac	tual Re	sponse	± Conc.	
·				Audit	Results		* * <u></u>	
Pre Run Audit:	By:	\overline{T}	1yru	MA.	Time:	110	7 Temn:	61
EPA Control Lin	$1 = \pm 2.5$	5% of 2	25.0%	$CO_2 = \pm$	± 0.625%	% CO2		
Flow: <u>1.5 SCFF</u> EPA Span Values	[Meas	ured By	: Rot	ameter:	<u>X</u>	Flowm	eter:	
Range: <u>0 - 25.0</u>	<u>% CO2</u>	Analyz	zer Ou	tput:	<u>0 – 1.0</u>	V.		
Analyzer: Mal	e: <u>Horib</u>	a_ Mo	del: _	<u> PIR-20(</u>	<u>10</u> SN:	<u> 60702</u>	<u>24</u>	<i>p</i>
Certified	By:	guid		ee hur	shay	<u> </u>	P Date: 4	Islis
Span Cyl #: <u>F</u>	3-00	4176	1	_ Conc.	10.45 %	% <u>CO</u> 2	Cyl Press:	200
Certified	By: 07	kurc.					Date: 2	125/11
zero Cyl#: <u>DO</u>	T 3AR 2	2065	DEte	Conc	.00.0 %	4 CO2	Cyl Press	11.20
						1 4 1 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10 ¹⁰	
Source: 0	off min	M		Run	;= , #: Ĕ		·····aiy ici2	<u></u>

Full Scale Value

Span % Difference (Δ %) = <u>Act % (ppm) - Exp % (ppm)</u> X 100 Exp % (ppm)

ł

Pre and Post Test Zero/Span Check Woodstove Data Sheet # 15-3

Site: <u>Myren Cons</u>	<mark>alting, I</mark>	nc. Lab.	<u>Colvi</u>	<u>lle, WA</u>	Date	9/5/17	Analyte:	<u>0</u>
Source: Opt	mum			Run	#: 56	2A 2		
Zero Cyl #: DC	JT SAI	7220	65	_ Conc.	<u>00.0</u> %	6 <u>CO</u> (Cyl Press:	u psi
Certified By	. Qro	wa.		-		I	Date: 2/25	46
Span Cyl #: <u>E8-</u>	004	+176	1	Conc.		% CO (VI Press: 200	Dosi
Certified By	: Liou	:17	echn	oloev	6	rc d	Date: 4 15/4	5
Analyzer: Make: C	aliforni	a Analy	tical Ir	لات strume	nts Mo	del: 200 SN:	1M12002	
Range: 0 – 10.0	% (CO AI	nalvzei	Outpu	 t: 0-	- 10.0 v.		
Flow: 1.5 scfh		Measu	red Bv	: Rotar	neter:	X Flowme	ter:	
EPA Span Values = EPA Control Limit	0 - 5.0 s = ± 2.5	0_% CO % of <u>5.</u> (or <u>0</u> 0% C	<u>- 10.0</u> % O = ± <u>0.</u>	6 CO <u>125</u> %	CO; ± 2.5% of	<u>10.0</u> % CO = ± <u>(</u>) <u>.250</u> % C
Pre Run Audit: B	iy: <u>A</u>	T; M	Pre	Test Au	Time:_ idit Res	1102 ults	_Temp:6 [°F
Point	Expec	ted Res	ponse		Actua	Response	± Conc.	A 9/
#	Meter	DVM	%	Mete	r DVM	[%	Difference	
Zero	00.0	.000	00.0	0.00	0.00	-0.0197-2	-0.01972	-0.39
Span	261	261	2.61	2.61	2.61	2.54509	-0.06491	-2.49
<u>Comments:</u>		590			 Tii	na: 18210	Tomme	°E
e vot ixun Audit g	Jy	70	Post	Test Au	dit Res	ults	remp:/	· F
Point	Expect	ed Resp	onse		Actual	Response	± Conc.	A 0/
#	Meter	DVM	%	Meter	DVM	%	Difference	Δ 70
Zero	00.0	.000	00.0	0.11	0.12	10.09820	+0.09820	-196
Span	261	2.61	2.61	2.77	2.76	2.69249	10.08249	3.16
Comments:	۴			······				

Zero % Difference (Δ %) = <u>Act % (ppm) – Exp % (ppm)</u> X 100 Full Scale Value

Ĺ

Span % Difference (Δ %) = <u>Act % (ppm) – Exp % (ppm)</u> X 100 Exp % (ppm)

Unit: 509 timum **Quality Checks** Ð Woodstove Data Sheet #16 Run: SPA 2017 Date: 9 / 5 Technicians: ATM ESS WST6-Form3, Rev 6/11 T/C # 1: Thermocouple Check (at ambient): °F; T/C # 2: °F T/C # 3: °F: T/C # 4: T/C # 5: °F; °F; T/C # 6: °F; T/C # 7: °F: T/C # 8: °F: 63 68 °F; T/C # 11: T/C # 9: 248 °F; T/C # 10: °F; 28 T/C # 12: °F; T/C # 13: 104 °F; T/C # 14: °F; 65 63 T/C # 15: °F; °F; T/C # 17:_ 64 T/C # 16: 57 °F; T/C # 18: 52 °F; T/C # 19: °F; T/C # 20: °F; 1.5 T/C # 21: °F; T/C # 22: °F; °F; T/C # 23: T/C # 24: °F: °F; T/C # 26: °F; T/C # 25: Comments T/C#11, Hot box turned on, T/C# 12, bucket iced, T/C#14, Bucket iced T/L #16. Bucked led T/C # 13. Bucket Iced Thermocouple Readout: Pretest Zero/Span Check and Calibration: Zero Adj Post Test Check %Difference 0 to: $(0^{\circ}F):$ ٥F °F Zero (0°F): 1 °F 4 : Span Adj $\cdot \cdot)$ Span (2000°F): 1999 100 °F °F (2000°F): to: 2000٥F (Allowable % Difference = 1.5%. Use Formulas on Woodstove Data Sheet #15 to calculate % Difference, % Difference calculated in degrees absolute.) Thermocouple Readout Pretest Linearity Check $0^{\circ}F = \mathcal{D}$ $200^{\circ}F = .201$ °F; °F; $400^{\circ}F = -39\%$ °F $800^{\circ}F = 801$ $600^{\circ}F = |00|$ °F; °F; $1000^{\circ}F = 1000$ °F $1200^{\circ}F = 1198$ °F; $1400^{\circ}F = 1299$ °F; $1600^{\circ}F = 1000$ °F $1800^{\circ}F = 1900^{\circ}F;$ $2000^{\circ}F = 2000$ ٥F Combustion Gas (CO_2 , Q_2 , CO) Train Leak Check: Pre OK Post ok Draft (Static) Gauge Zero Check: Post of Pre Dk Scale Check Pre (Wt. #'s): 525.5 - 520.5 = 5.0165. OK. Post (Wt, #'s): 529.6 -524.6 = 5.0165. OK Stack Cleaned Prior to the Run: Yes No Tunnel Cleaned Prior to the Run: Yes No

	FIREPLACE DATA SHEET #10 16-1 Unit: Optimum
	Quality Checks (Revised 2/10) Run #: EPA 2
	H Date: $\frac{9}{5}/17$
Λ	Ambient Blank Probe Inlet Location 38 "from the bottom of the hood (Spec = $\leq 6.6'$) and 27 "from the chimney centerline (Spec = $\leq 3.3'$).
	Dilution Tunnel Draft: Start: .000 Stop: .000 Avg.: .000 "H ₂ O
·	Test Chamber Air Velocity: Start: <u>>5, <10</u> Stop: <u>>5, <12</u> Avg.: <u>>5, <10</u> ft/min
	Test Chamber Ambient Moisture (AM) / Relative Humidity (%RH)
:	Start: Wet Bulb 0
	Minimum Tunnel Flow For 100% Smoke Capture: Pitot Reading (Ap): .09 ~ Tunnel Flow: _5%dscfm
	Fireplace Back Wall Temperature Immediately Prior to Test Start: $\frac{V/A}{A}$ °F
	Scale Check: Pre (Wt., #): 5755 - 520.5 = 50 166 / 50 166 = 0/2 555 Post (Wt.,#): 529.6 - 524.6 = 50 169 / 50 169 - 0 2 105
,	Scale Zero Drift: Pre: lbs. Post: lbs. Drift: lbs.
	Combustion Gas (CO ₂ , O ₂ &CO) Train Leak Checks: Pre: $1k \sqrt{855}$ Post: $1k \sqrt{154}$ Draft (Static [P _g]) Gauge Level and Zero Check: Pre: $0k \sqrt{155}$ Post: $0k \sqrt{155}$
	THERMOCOUPLE CHECK (@ Ambient): $T/C \#1$: 63 $T/C \#2$: $ T/C \#3$: $ T/C \#4$: $ T/C \#5$: $ T/C \#6$: $ T/C \#7$: $T/C \#8$: $ T/C \#9$: 64 $T/C \#10$: 64 $T/C \#11$: $105 (ePH)$ $T/C \#12$: $25 I$ $T/C \#13$: 64 $T/C \#14$: 54 $T/C \#15$: $G = 1$ $T/C \#16$: 57 $T/C \#17$: $G = 2$ $T/C \#18$: 55 $T/C \#19$: $T/C \#20$: $G = 2$ $T/C \#22$: $T/C \#22$: $T/C \#22$:
	Thermocouple Readout:
	Pretest Zero & Span Check and CalibrationPost Test Zero & Span CheckZero (0° F): \bigcirc F Adj to: \frown F0° F \land A*: $\neg \bigcirc, ? 2$ Span (2000° F): $\boxed{1999}$ ° F Adj to: $\boxed{2000}$ ° F Span(2000° F): $\boxed{2002}$ \land A*: $\boxed{-0.12}$
	Pretest Thermocouple Readout Linearity Check:
	$0^{\circ}F = 0$ 200 $^{\circ}F = 201$ 400 $^{\circ}F = 340$ 600 $^{\circ}F = 601$
	800 °F = 801 1000 °F = 1000 1200 °F = 198 1400 °F = 1399
	$1600 \ ^{\circ}F = 1600 \ 1800 \ ^{\circ}F = 1800 \ ^{\circ}F$
i	Stack Cleaned Prior to Test: Yes No
1	Tunnel Cleaned Prior to Test: Yes No No

.

Becherini Scale Center, Inc. 317 E. Sprague Spokane, WA 99202

SCALE CALIBRATION RECORD

Customer: ////	DEN			Date: 9/1/1	2
Work Order Number	: 49320	e P	PO Number:		<u> </u>
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
1. PANTHER	7466459	1000 × .1	Q		
	PassFail	Care and a construction of the construction of	50		
Notes:			100		
No.	A		300-	was polyeour	<u> </u>
50-	70		500		
<u> </u>	11 be new 30	A16 045-			
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
2. PANTHER	101555556ch	5K×1	Q		
	PassFail		50		
Notes:	Telescolumba -	and a second second second second second second second second second second second second second second second	100		
())人	JE		300		
		2:1_	500		
	JOARE	Veraoat	à	·	
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
3. PANTHER	00025736A5	1000 x .1	Ø	0	Ø
	Pass.) Fail		50	50	50
Notes:			100	99.9	100
WELING	CAC/BRATED	CERT.	300	299.6	300
	G.L.		500	498.8	500
30	UTH JEANE		P	$\square \phi$	
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
4. PAINTHER	00926516KL	1000 x.1	đ	6	/
	Pass)Fail		50	50	
Notes: SCALE	CARCHELIAR	N	100	100	
			300	300	
Center	Scale	· ·	500	500	
			\mathcal{Q}	P	1

Additional Comments:

	· . ·	,				- <u> </u>	
- A	Last Checked:	11/16		 Next Check Du	e:		
•	Weights Certified:	10,	116	Technician:	<u> </u>		
			,				

Calibration checked IAW NIST handbook 44

Becherini Scale Center, Inc. 317 E. Sprague Spokane, WA 99202

SCALE CALIBRATION RECORD

Customer: //	IREN		······	Date: 9/1/1	~~
Work Order Numbe	er: 49320	, , , , , , , , , , , , , , , , , , ,	PO Number:	//////////////////////////////////	
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
1. SARTORIU	25359106	15Kx.5	Ø	0	0
CTSL1-4	Pass. Fail		50	50	50
Notes: STRAI	TESTWA	Contraction (1)	500	499	5/3/2
CALIBRITO	3 ~/ 297/1		1000	998	100
Scala -11			2003926	3925	3926
	SCKS GODD		4	Ø	Ø
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
2. OHAUS	2350003	24 x.002	d d	0	Ø
RANGER	PassFail		.5	_5	-5
Notes: Cavily	DEM -		4	9	4
Cutter de l	SCALE, S	ALT.	20	20,002	20
	SOD ,	- · · · ·	24	24.002	24
			à	Ø	Ø
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
3	Annual Instance of the Instance of the Contract of the Contrac				· · ·
· ·	PassFail				- <u> </u>
Notes:					1
		·			
·	·		5		
Equipment Mfg.	Serial Number	Specifications	Weight used	Initial Readings	Final Readings
4.					
	PassFail				
Notes:					
	•				
Additional Comments	s:				
Last Checked:	stir		ext Check Duce		
Weights Cortified	1/10 1/11			120	2
rraignia Certified.	10/16	Colibration of a district		00-2	2 Contra
		Calibration checked IAW	NIST nandbook 44		Dec y

LABORATORY EQUIPMENT • SALES • SERVICE • CALIBRATION • REPAIRS 2340 SE 11TH Ave. Portland, Oregon 97214 • Box 14831 Portland, Oregon 97293 (503) 236-2712 • FAX (503) 235-2535 • www.qc-services.com

Myren Consulting 512 Williams Lake Road Colville, WA 99114

Report Number: MYRC0224850860170419

A2LA ACCREDITED CERTIFICATE OF CALIBRATION WITH DATA

ltem	Ma	ke	Model	Serial Number	Customer	ID Location
Balance	Sarto	rius	CPA224S	24850860	N/A	Lab
Units	Reada	bility	SOP	Cal Date	Last Cal D	ate Cal Due Date
	0.00	01	QC012	4/19/17	10/20/16	10/2017
······			FUNC	TIONAL CHECKS		· · · · · · · · · · · · · · · · · · ·
ECCEN Test Wt: 100	NTRICITY Tol: 0.0003	LINE Test Wt: 50 x 4	ARITY Tol: 0.0002	STANDARD DEV Test Wt: 200 0.	IATION Fol: 0001	ENVIRONMENTAL CONDITIONS
As-] Pass: ☑ As Pass: ☑	Found: Fail: [] -Left: Fail: []	As-F Pass: 🗹 As-J Pass: 🗹	ound: Fail: □ Left: Fail: □	1.200.0001 5.200.0003 2.200.0002 6.200.0003 3.200.0001 7.200.0003 4.200.0002 8.200.0003	9.200.0003 10.200.0003 <u>Result</u> 0.00008	Good Fair Poor Temperature: 19.0°C

AZLA AUGREDITED S	ECTION OF REPORT	
As-Found	As-Left	Expanded Uncertain
200.0007	200.0001	0.00020
100.0003	100.0001	0.00020
50.0001	50.0000	0.00020
10.0000	10.0001	0.00020
1.0000	1.0000	0.00020
0.1000	0.1000	0.00020
	A2LA ACCREDITED S As-Found 200.0007 100.0003 50.0001 10.0000 1.0000 0.1000	AzLA ACCREDITED SECTION OF REPORT As-Found As-Left 200.0007 200.0001 100.0003 100.0001 50.0001 50.0000 10.0000 10.0001 1.0000 1.0000 0.1000 0.1000

CALIBRATION STANDARDS

ltem	Make	Model	Serial Number	Cal Date	Cal Due Date	NIST ID
Weight Set	Rice Lake	30 kg-1mg	\$751	1/26/17	1/2018	20170116

Permanent Information Concerning this Equipment:

Comments/Info Concerning this Calibration:

4/17 Performed span adjustment.

Report prepared/reviewed by:

Technician: R. Hintz Signature:

THIS CERTIFICATE SHALL NOT BE REPRODUCED WITHOUT THE APPROVAL OF QUALITY CONTROL SERVICES

The uncertainty is calculated according to the ISO Guide to the Expression of Uncertainty in Measurement and includes the uncertainty of standards used combined with the observed standard deviation and readability of the unit under test. The uncertainty is expanded with a k factor of 2 for an approximate 95% level of confidence. Instruments listed above were calibrated using standards traceable to the National Institute of Standards and Technology (NIST). Calibration data reflect results at the time and location of calibration. Calibration data should be reviewed to insure that the instrument is performing to its required accuracy. Calibrations comply with ISO/IEC 17025 and ANSI/Z540-1-1994 quality standards.

Date: 4.19.2017

LABORATORY EQUIPMENT · SALES · SERVICE · CALIBRATION · REPAIRS 2340 SE 11TH Ave. Portland, Oregon 97214 · Box 14831 Portland, Oregon 97293 (503) 236-2712 · FAX (503) 235-2535 · www.gc-services.com

Myren Consulting 512 Williams Lake Road Colville, WA 99114

Report Number: MYRC0224850860161020

A2LA ACCREDITED CERTIFICATE OF CALIBRATION WITH DATA

ltem	Ma	ike	Model	Serial Number	Custome	r ID Loca	ation
Balance	Sart	orius	CPA224S	24850860	N/A	La	ab
Units	Reada	ability	SOP	Cal Date	Last Cal D	ate Cal Du	e Da
g	0.0	001	QC012	10/20/16	4/13/16	4/20	017
			FUNCT	NONAL CHECKS			
E	CCENTRICITY	LINE	ARITY	STANDARD DEVI	ATION	ENVIRONMENT	AL
Tes	t Wt: Tol:	Test Wt:	Tol:	Test Wt: T	ol:	CONDITIONS	5
Ì	100 0.0003	50 x 4	0.0002	100 0.0	0001.		m
D	As-Found:	As-F	'ound:	1.100.0000 5.100.0000	9.100.0000	Good Fair P	oor
Pass: Pass	As-Left:	Pass: 12 As- Pass: 17	Fail: ⊔ Left: Fail: □	2. 100.0000 6. 100.0000 3. 99.9999 7. 99.9999 4. 100.0000 8. 100.0000	10. 100.0000 <u>Result</u> 0.00004	Temperature: 19.8	°℃

Standard	As-Found	As-Left	Expanded Uncertaint
200	199.9997	200.0000	0.00014
100	99.9998	100.0000	0.00014
50	49.9999	49.9999	0.00014
10	10.0000	9.9999	0.00014
1	1.0000	1.0000	0.00014
0.1	0.1000	0.1000	0.00014

CALIBRATION STANDARDS

ltem	Make	Model	Serial Number	Cal Date	Cal Due Date	NIST ID
Weight Set	Rice Lake	30 kg-1mg	S751	1/4/16	1/2017	20160003
				······································		

Permanent Information Concerning this Equipment:

Comments/Info Concerning this Calibration:

Signature:

Report prepared/reviewed by: Date: 10.2014

Technician: R. Hintz

THIS CERTIFICAT SHALL NOT BE REPRODUCED WITHOUT THE APPROVAL OF QUALITY CONTROL SERVICES, INC.

The uncertainty is calculated according to the ISO Guide to the Expression of Uncertainty in Measurement and includes the uncertainty of standards used combined with the observed standard deviation and readability of the unit under test. The uncertainty is expanded with a k factor of 2 for an approximate 95% level of confidence. Instruments listed above were calibrated using standards traceable to the National Institute of Standards and Technology (NIST). Calibration data reflect results at the time and location of calibration. Calibration data should be reviewed to insure that the instrument is performing to its required accuracy. Calibrations comply with ISO/IEC 17025 and ANSI/Z540-1-1994 quality standards.

LABORATORY EQUIPMENT • SALES • SERVICE • CALIBRATION • REPAIRS 2340 SE 11TH Ave. Portland, Oregon 97214 • Box 14831 Portland, Oregon 97293 (503) 236-2712 • FAX (503) 235-2535 • www.qc-services.com

Myren Consulting 512 Williams Lake Road Colville, WA 99114

Report Number: MYRC0224850860160413

A2LA ACCREDITED CERTIFICATE OF CALIBRATION WITH DATA

ltem	Ma	ke	Model	Serial Number	Customer	ID Locatio
Balance	Sarto	rius	CPA224S	24850860	N/A	Lab
Units	Reada	bility	SOP	Cal Date	Last Cal Da	ate Cal Due D
g	0.00	01	QC012	4/13/16	11/4/15	10/2016
ECCEr Test Wt:	NTRICITY Tol:	LINE Test Wt:	ARITY Tol:	STANDARD DEVIA Test Wt: To	TION I:	ENVIRONMENTAL CONDITIONS
As-I Pass: 🗹 As-	Found: Fail: Left:	50 x 4 As-F Pass: ☑ As-	0.0002 'ound: Fail: □ Left: Fail: □	$\begin{array}{c ccccc} 100 & 0.00 \\ \hline 1.100.0000 & 5.100.0000 \\ \hline 2.100.0001 & 6.100.0000 & 1 \\ \hline 3.100.0000 & 7.100.0001 \\ \hline 4.100.0001 & 8.100.0001 \\ \hline \end{array}$	001 9.100.0001 10.100.0001 <u>Result</u> 0.00005	Image: Constraint of the second sec

Standard	As-Found		
200		AS-LET	Expanded Uncertainty
200	200.0004	200.0000	0.00015
100	100.0001	100,0000	0.00015
50	50,0000	40,0000	0.00015
10	10.0000	49.9999	0.00015
10	10.0000	9.9999	0.00015
1	0.9999	1.0000	0.00015
0.1	0.0999	0 1000	0.00015
		0.1000	0.00015

CALIBRATION STANDARDS

item	Make	Model	Serial Number	Cal Date	Cal Due Date	NIST ID
Weight Set	Rice Lake	30 kg-1mg	\$751	1/4/16	1/2017	20160003
	•					20100000

Permanent Information Concerning this Equipment:

Comments/Info Concerning this Calibration:

4/16 Performed internal span overwrite adjustment.

Report prepared/reviewed by Date: 4.13.2016 Technician: R. Hintz Signature: THIS CERTIFICATE SHALL NOT BE REPRODUCED WITHOUT THE APPROVAL OF QUALITY CONTROL SERVICE

The uncertainty is calculated according to the ISO Guide to the Expression of Uncertainty in Measurement and includes the uncertainty of standards used combined with the observed standard deviation and readability of the unit under test. The uncertainty is expanded with a k factor of 2 for an approximate 95% level of confidence. Instruments listed above were calibrated using standards traceable to the National Institute of Standards and Technology (NIST). Calibration data reflect results at the time and location of calibration. Calibration data should be reviewed to insure that the instrument is performing to its required accuracy. Calibrations comply with ISO/IEC

LABORATORY EQUIPMENT · SALES · SERVICE · CALIBRATION · REPAIRS 2340 SE 11TH Ave. Portland, Oregon 97214 · Box 14831 Portland, Oregon 97293 (503) 236-2712 · FAX (503) 235-2535 · www.qc-services.com

Myren Consulting 512 Williams Lake Road Colville, WA 99114

Report Number: MYRC0224850860151104

A2LA ACCREDITED CERTIFICATE OF CALIBRATION WITH DATA

<u>. </u>				INS I KUWE		N			
	Item	Mä	(e	Model	Serial Numb	per Custom	er íD	Location	
	Balance	Sarto	rius	CPA224S	24850860	N/A		Lab	
-	Units	Reada	bility	SOP	Cal Date	Last Cal	Date	Cal Due Da	te
	g	0.00	01	QC012	2 11/4/15	4/15/1	.5	4/2016	
				FUNC		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
	ECCEI				STANDARD	DEVIATION	ENVIF	RONMENTAL	
	100	0.0003	50 x 4	0.0002	100	Tol: 0.0001			
	As-] Pass: ☑	Found: Fail: 🛛	As-F Pass: ☑	ound: Fail: □	1.100.00005.99.992.99.99996.99.99	99 9. 99. 99999 99 10. 99. 9999	Good	Fair Poor	
	As Pass: 🗹	-Left: Fail:	As- Pass: 🗹	Left: Fail: □	3. 100.0000 7. 99.99 4. 100.0000 8. 99.99	99 <u>Result</u> 98 0.00006	Tempe	rature: 12.6°C	

	A2LA ACCREDITED S	ECTION OF REPORT -	<u> </u>
Standard	As-Found	As-Left	Expanded Uncertaint
200	199.9998	200.0001	0.00017
100	99.9999	100.0000	0.00017
. 50	50.0000	50.0000	0.00017
10	10.0000	10.0001	0.00017
1	1.0000	1.0000	0.00017
0.1	0.1000	0.1000	0.00017

CALIBRATION STANDARDS

Item	Make	Model	Serial Number	Cal Date	Cal Due Date	NIST ID
Weight Set	Rice Lake	30 kg-1mg	S751	12/2/14	12/2015	OR-13-314-C

Permanent Information Concerning this Equipment:

Comments/Info Concerning this Calibration:

Report prepared/reviewed by: Date: 11-4-2015 Technician: R. Hintz Signature: THIS CERTIFICATE SHALL NOT BE REPRODUCED WITHOUT THE APPROVAL OF QUALITY CONTROL SERVICES, IN

The uncertainty is calculated according to the ISO Guide to the Expression of Uncertainty in Measurement and includes the uncertainty of standards used combined with the observed standard deviation and readability of the unit under test. The uncertainty is expanded with a k factor of 2 for an approximate 95% level of confidence. Instruments listed above were calibrated using standards traceable to the National Institute of Standards and Technology (NIST). Calibration data reflect results at the time and location of calibration. Calibration data should be reviewed to insure that the instrument is performing to its required accuracy. Calibrations comply with ISO/IEC 17025 and ANSI/Z540-1-1994 quality standards.

DENSITY STANDARD USED FOR TROEMNER PRECISION WEIGHTS

Testing and Materials specification ANSI/ASTM E 617 and the International Organization of Legal Metrology (OIML) Troemner Inc. adjusts all new weights and all weights received for recalibration on the basis of apparent mass versus material of density 8.0g/cm³ at 20°C. This action is in accordance with the recommendations of the American Society for International Recommendation No. 20

on the basis of apparent mass versus 8.0g/cm³. In order to smooth the transition in this country, the Reports of Calibration of the National Bureau of Standards are reporting facturers are adjusting the built-in weights in their balances of apparent mass versus "brass," a hypothetic material of defined density $8.4g/cm^3$ at $0^{\circ}C$ and $8.3909g/cm^3$ at $20^{\circ}C$. This practice officinated in the early 1800's and was adopted in to 8.0g/cm³). A number of countries have adopted the are made from stainless steel (density ranges from 7.77g/cm³ recommendations of OIML and the foremost balance manu-Previously, all weights had usually been adjusted on the basis all of the English speaking countries as well as a number of other countries. Now most mass standards and test weights the corrections to calibrated mass standards on both bases.

many cases the allowed weight adjustment tolerances are so be 7 parts per million higher than the value assigned on the small. For a given weight, the mass value assigned on the basis of apparent mass versus "density 8.4g/cm³" material. In In terms of normal weighing procedures the change is very basis of apparent mass versus density 8.0g/cm³ material will

change. For example at the 1 kilogram level the change is 7 mg. For comparison the ANSI/ASTM E 617 Classe 6 tolerance for 1 kilogram is 100 mg while the Class 1 tolerance is 2.5 mg. A detailed discussion of mass and mass values is given in weights often have a smaller tolerance than the correction large that this change is immaterial although closely adjusted Reference 3.

Class 1, 1.1, 2, 3, 4, 5, and 6 tolerances and the equivalent OIML and NBS tolerances are of the following materials: Precision Weights manufactured by Troenner Inc. to ASTM

	Base		
Designation	Material	Denaity	Weight Range
Stainless Steel	18-8	7.84g/cm ³ at 20°C	1 g & larger
Stainless Steel	18-8	8.0g/cm ³ at 20°C	50 mg to 500 m
Aluminum	1100	2.7g/cm ³ at 20°C	30 mg & smalle
References:	•		

1. ... ANSI/ASTM E 617

Available from: Trommer Inc. 6425 Greenway Ave., Phile, Pa. 19142 215-724000 or American Society for Testing and Materiala, 1916 Race Street, Phile., Pa. 19103

OIML INTERNATIONAL RECOMMENDATION No. 20 Available from: Organization International Do Merologie Legale Available from: 11 Kue Trugot - 73009 Parta, France a

NBS MONOGRAPH 133, MASS AND MASS VALUES Superitable from: Superintentiant of Documenta, U.S. Government Printing Office Washington, D.C. 20402 Order by SD Catalog No. C13,44:1331 Stock Number 0303-01178 ei,

itances • Laboretory Apparatus us - Philadelphia, Pa. 19142

TROEMNER NC.

P. 1-1 Wts. used for Scale QC Checks

	· · ·				•	· · · · · ·
			. •			
		•	· · ·	·		
		· · ·			and a strange of the second	
			4	9 Ma 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987 - 1987	начаровалеринаразавинан	distantiation of the
	-	TIPRIMALIANA BARASA	88585858588888888888888888888888	104040404040404040404040404040404040404	TUTT	
11101	ALTE	Culture			ION SA	
۰.		CERTIFIC		ALIER.		
		is it the vour l	Altek Linit has beel	n calibrated Usir	ng standaros wijos Inde sold Technolog	
	This is to Ce	rtify that your r	the National Inst	itute of Stanuc	res Actual recou	
	accuracies a	s within the lir	mits of the NIST L	;allorations de la available for ex	amination.	
	(formerly inc	these standard	is are on file and all			
	herranin a te		Corp.			
	Certified by:	Altek indusuiles	Annually			
	Recommend	Recamponent				
			411 96			
	ln s	ervice date			E22	
			Se	rial # 177	JJJ (Second	
		ZIMPE	Serial No.	1. 1. 1.		
		<u>/ Canal</u>				
	Model				CONTRACTOR DALLARY AND A DESCRIPTION	The second second second second second second second second second second second second second second second se
-	Model K	Lund		ALTEK I	NDUSTRIES CO	
-	Model N	<u>Lued</u>	\sim	ALTEK I	NOUSTRIES CO Drive, Rochemer, NY, 1484	
	Model N Calibre	tion Technician		ALTEK 1 210 Commerce (716) 334	NDUBTRIES CO Drive, Rochewier, NY 1464 1-3720 FAXI (TIP) 324-6573 800-322ALTEK	
		tion Technician		ALTEK 1 210 Commerce (716) 334	NDUSTRIES CO Drive, Rochester, NY 1462 1-3720 FASI(716) 934-6873 800-32 44-587 800-32 5535 Automatic USA	
		tion Technician		ALTEK I 210 Commerce (716) 334	NDUBTRICS CD Drive Rochester, NY 14824 1-3720 - RAX (270) - 344-697-4 800-322 ATEL 800-322 5535 Anywhere In USA	

MYREN CONSULTING, INC. 512 Williams Lake Road Colville, WA 99114 Office: 509 684 1154 Lab: 509 685 9458

THERMOCOUPLE READOUT CALIBRATION

Calibration Data Sheet # 65 Revision 1 3/3/04

7/19/17 DATE : TECHNIC

Thermocouple	Readout Manufactu	irer: <u>Om</u>	eqa		
Model #: 400	B-TC Serial #:	11020109	Type: K Ra	inge: <u>0</u>	-2100°1=
Location: C	enter Dial	Station	-0 al	Stachor	#2
Calibrated wi	th: Alter SA	J 177-55	3 0-2	2100°F	
As found: 0° $\frac{2 00}{2}$	$F = \bigcirc Ac$ F = 2103 Ac	djusted to: djusted to:	210		
0 = <u>D</u>	$\frac{\text{* Dif}}{OX} 800 = 6$	802 -	$\frac{\text{Dif}}{(0,0)} \times 1600 =$	1601	* Dif 005
100 = <u>97</u>	+ 054 × 900 =	899 +	007 X 1700 =	1700	04
200 = 202	<u>~ 0030</u> 1000 =	1001	<u>007</u> 7 1800 =	1801	- 004×
300 = <u>298</u>	<u>+ 926</u> 1100 =	1099 t	<u>406</u> × 1900 =	1900	04
400 = 400	0+1200 = 1200 = 100	1199 +	0,06× 2000 =	2001	- 004X
500 = <u>498</u>	<u>+ 0,21</u> ×1300 =	1 <u>299</u> +	2100 =	2100	04
600 = 602	- 0.1941400 =	1400	54		
700 = 698	+ 017 1500 =	500	or t		

% Dif = (Reference Temperature °F + 460) - (Readout Temperature °F + 460) Reference Temperature °F + 460

Or

MYREN CONSULTING, INC. 512 Williams Lake Road Colville, WA 99114 Office: 509 684 1154 Lab: 509 685 9458

THERMOCOUPLE READOUT CALIBRATION

Calibration Data Sheet # 65 Revision 1 3/3/04

DATE : TECHNIC

Thermocouple Readout Manufacturer: Ome	99
Model #: 115 KF Serial #: 004487 KF	Type: K Range: 0 -1900°/F
Location: Apex 456- Pmester B	
Calibrated with: Alks SN 177-5	33 0-2100°15
As found: 0° F = O Adjusted to: <u>1900</u> \circ F = <u>1900</u> Adjusted to:	
$0 = \underbrace{\bigcirc}_{0} \underbrace{\overset{\text{\$ Dif}}{0}}_{0} 800 = \underbrace{799}_{+} \underbrace{\overset{\text{\$ D}}{+}}_{+}$	$\frac{1}{1008} \times 1600 = \frac{1599}{1599} + \frac{905}{1005} \times 1$
$100 = 95 + 3989 \times 900 = 896 + 396 $	$029 \times 1700 = 1699 + 005 \times$
$200 = 202 - 30^{1000} = 1000 C$	0^{4} 1800 = <u>1800</u> 04
$300 = 299 + 0.3^{1100} = 1099 + 300$	206^{X} 1900 = <u>1906</u> 0X
$400 = 399 + 0.12^{1200} = 1198 + 0.000$	012 × 2000 =
500 = 498 + 021 + 1300 = 1297 + 000	=
600 = 599 + 009 + 1400 = 1399 + 000 + 1000 = 1399 + 0000 + 0000 + 000000	pos X
$700 = 10910 + 034 \times 1500 = 1498 + 000$	2104

MYREN CONSULTING, INC. 512 Williams Lake Road Colville, WA 99114 Office: 509 684 1154 Lab: 509 685 9458

THERMOCOUPLE READOUT CALIBRATION

Calibration Data Sheet # 65 Revision 1 3/3/04

DATE: 7/19/17

		`.		TECHNICIAN:	ESS.
Thermocouple	Readout Manuf	facturer: _	JENOO	i	•
Model #: 76	<u>3-KF-02</u> serial	#: 90016	Type:	Range: D	- 19993/=
Location: A	pex 511-1	n meter	<u> </u>	······································	
Calibrated w	ith: Altec	SN. 17	7533	0-2100)*/=
As found: 0°	F = -1 F = -1 F = -1	Adjusted Adjusted	to:	0	
0 =	* Dif 07 80	0 = <u>801</u>	* Dif 008 008	1600 = <u>1618</u>	* Dif - <u>087</u> ×
100 = <u>95</u>	+ 089 + 901	b = 902	- 0,15 X	1700 = 1714	
200 = 200	<u>07</u> 1000	0 = 1008	K	1800 = <u>1911</u>	- 0,49-1
300 = <u>296</u>	+ 053 × 1100) = <u>) 0</u>	- 1064 Y	1900 = 1904	-10017+
400 = 394	+. 070 ×1200) = 1213	- <u>0078</u> K	1999 2000 = 1999	04
500 = <u>492</u>	+.)083 × 1300) = <u>1317</u>	- 097×		•
600 = <u>596</u>	t. 038 1400	= <u>1418</u>	- 10097 X		
700 = 696	t 034 × 1500	= 1518	00,927	(

Or

 $% Dif = (Reference Temperature ^{\circ}C + 273) - (Readout Temperature ^{\circ}C + 273)$ Reference Temperature ^{\circ}C + 273 Woodstove Data Sheet # 55 Revision 0, 12/18/01

			·		in the second second second second second second second second second second second second second second second						
4	1.			1							
Wy num	Remine			0-220	101			3	44	64	00
AN: 4. 7.	Tayloe	HNOSET		20-1206	1	Tube		31	4.2	6 2	at
TECHNICI	TAY LOR	1330 N/A		10-12%	201	T.L.		34	4/2	62	tt
7/18/17	Fisher	1 sansa 1	<u>AD4544</u>	2081-0	101	Tube		53	17	61	71.95
DATE :_	Ectes	Elt	K 35473	0-2600	U°-	70 60	4	0.1	6.0	15	25
LIBRATION	Ertco	100531-6	16.97	- 1 to 100 C	0.1 C	7066	عد	د	10 10	14	24.6
THERMOMETER CA	MANUFACTURER:	CAT #.	SERIAL NO.	RANGE :	GRADUATIONS:	ТҮРЕ:	TEMP. POINT	H	01	m	4

COMMENTS:

 ${}^{\circ}F = ({}^{\circ}C \times 9/5) + 32$ ${}^{\circ}C = (5/9) ({}^{\circ}F - 32)$

EVER READY THERMOMETER CO., INC. 228 LACKAWANNA AVENUE WEST PATTERSON, NJ 07424 (201) 812-7474

REPORT OF CALIBRATION

LIQUID-IN-GLASS-THERMOMETER

CALIBRATED BY EVER READY THERMOMETER CO.

MARKED: ERTCO CAT 1005-3FC S/N-1697 RANGE: -1 TO +101 DEGREES C IN 0.1 DEGREE GRADUATIONS.

THERMOMETER READING		CORRECTION (ITS-90)**
$\begin{array}{c} 0.00\\ 10.00\\ 20.00\\ 30.00\\ 37.00\\ 40.00\\ 50.00\\ 56.00\\ 60.00\\ 70.00\\ 80.00\\ 90.00\end{array}$	С	0.00 C 0.00 0.00 0.00 0.00 0.00 0.00 0.0
100.00		0.00

** ALL TEMPERATURES IN THIS REPORT ARE BASED ON THE INTERNATIONAL TEMPERATURE SCALE OF 1990 (ITS-90) PUBLISHED IN THE METROLGIA 27, NO. 1, 3/10/90.

THIS THERMOMETER WAS CALIBRATED AGAINST A STANDARD CALIBRATED AT THE NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY (NIST) FORMERLY THE NATIONAL BUREAU OF STANDARDS (NBS) IN ACCORDANCE WITH ASTM METHOD E 77, AND NBS MONOGRAPH 174.

FOR A DISCUSSION OF ACCURACIES ATTAINABLE WITH SUCH THERMOMETERS SEE NBS MONOGRAPH 250-23.

IF NO SIGN IS GIVEN ON THE CORRECTION, THE TRUE TEMPERATURE IS HIGHER THAN THE INDICATED TEMPERATURE; IF THE SIGN GIVEN IS NEGATIVE, THE TRUE TEMPERATURE IS LOWER THAN THE INDICATED TEMPERATURE. TO USE THE CORREC-TIONS PROPERLY, REFERENCE SHOULD BE MADE TO THE NOTES GIVEN BELOW.

CONTINUED

TEST NUMBER: 152439 DATE: 07/16/96 STANDARD SERIAL NO. 128239 NIST IDENTIFICATION NO. 88024

PAGE 2 OF

REPORT OF CALIBRATION

LIQUID-IN-GLASS-THERMOMETER

THE THERMOMETER WAS TESTED IN A LARGE, CLOSED-TOP, ELECTRICALLY HEATED, LIQUID BATH, BEING "IMMERSED" 76MM. THE TEMPERATURE OF THE ROOM WAS ABOUT 25 DEGREES C (77 DEGREES F). IF THE THERMOMETER IS USED UNDER CONDITIONS WHICH WOULD CAUSE THE AVERAGE TEMPERATURE OF THE EMERGENT LIQUID COLUMN TO DIFFER MARKEDLY FROM THAT PREVAILING IN THE TEST, APPRECIABLE DIFFERENCES IN THE INDICATIONS OF THE THERMOMETER WOULD RESULT.

THE TABULATED CORRECTIONS APPLY PROVIDED THE ICE-POINT READING, TAKEN AFTER EXPOSURE FOR NOT LESS THAN 3 DAYS TO A TEMPERATURE OF ABOUT 20 DEGREES C (70 DEGREES F) IS 0.00 DEGREES C. IF THE ICE-POINT READING IS FOUND TO BE HIGHER (OR LOWER) THAN STATED, ALL OTHER READINGS WILL BE HIGHER (OR LOWER) TO THE SAME EXTENT. IF THE THERMOMETER IS USED AT A GIVEN TEMPERATURE SHORTLY AFTER BEING HEATED TO A HIGHER TEMPERATURE. AN ERROR OF 0.01 DEGREES OR LESS, FOR EACH 10 DEGREE DIFFERENCE BETWEEN THE TWO TEMPERATURES, MAY BE INTRODUCED. THE TABULATED CORRECTIONS APPLY IF THE THERMOMETER IS USED IN THE UPRIGHT POSITION; IF USED IN A HORIZONTA POSITION, THE INDICATIONS MAY BE A FEW HUNDREDTHS OF A DEGREE HIGHER.

TEST NUMBER: 152439 DATE: 07/16/96 STANDARD SERIAL NO. 128239 NIST IDENTIFICATION NO. 88024

Charles Tang-Nian QUALITY CONTROL MANAGER

	Dry Gas Meter Calibration Data									
Date: 7	Date: 7/18/17 Technician: ATM ESS									
Calibration Meter Mfr: Rockwell SN: 1052202 Y: 0.9947										
Meter Bo	Meter Box ID <u>456-P</u> Meter Mfr: Rockwell SN: 3039270									
Electrical	Electrical Check Oke Pitot Leak Check N/A									
Leak Che	Leak Check Front Half OVER Back Half OVER									
BP = 28.40 in Hg										
Orifice]	Gas Volume			Temper	rature		Time	7	
(Δh)	······································	Cal.	Dry Gas		Cal.	Dry Ga	as Meter (Θ)			
H ₂ O		Meter	Meter		Meter	Inlet	Outlet		ľ	
		(vc), (cu.ft.)	(vm), $(m^{3})(ft^{3})$		(1C), °F	(Tmi),	(Tmo),			
		(••••••)				(°F) (°C)	(°F)(°C)			
.80	initial	394, 747	6B1.600	initial	68	72	72		10	
180	final	400.005	686.765	mid	68.5	74	74	11:00	0	
9.00				final	68.5	76	76			
.00	total	5.258×	5.1651	avg.	68.3'	74×	742	74 1		
	-		.470 Ch-3/m	n .	528.8	5344	534 4	534X]	
,90	initial	400.445	687.200	initial	68.5	74	74		0	
,90	final	405.604	692.312	mid	69	79	79	10:00	0	
90	· · ·		X	final	69	81	81			
	total	5,1591	5.112	avg.	68.81	784	78×	78		
			1511 Ft. ?/min"	E E	28.81	538X	538 *	538 Y		
1.00	initial	406.092	642.800	initial	69	77.	-77			
1,00	final	411.274	641.700	mid	67.5	04	84	9130	\cup	
1,00	tetal	C LOO X	- 12DY	Tinal	67.5 . 0 0 X	024	02	02×	0	
	totai	5.182	-5.100 X	avg	67.3 -20 22	<u> </u>	53	EUZ X	ł	
	initial	<u> </u>	13 13 19 17 MIN.	initial			5.0	501		
	final		·	mid		. '				
	1111641			final						
•	total ,			avg.						
		· ·			4				1	
	initial			initial						
-	final			mid						
				final						
	total			avg.		·				

 $Y = (Y)(Vc)(Pb)(Tm + 460) \qquad \Delta h @= (0.0317)(\Delta h) \\ (Vm)(Pb + \Delta h/13.6) (Tc + 460) \qquad \Delta h @= (0.0317)(\Delta h) \\ Pb(Tmo + 460) \qquad [(Tc + 460) (\Theta)] / [(Vc)(Yc)]^{2}$

. . N.

Revised 7/11

-	- Book Half Leak Check
•	Manometer Reading Start 9.88 "H20 Leg 1 Manometer Reading Leg 2 8.87 Leg 2 8.87 OL 8.87 OL 8.87 OL 8.87 OL 0.00 Movement 0.00 "H20 in 60 Seconds. = OK
	FRONT Holf Leak Check.
-	Vac meter Reading Leak Revenue in Hy Staver Stop cmm ofm
	DGM -16.8 . 916 .917001
	TM -16.8 1990 .990000

.

Meter Box: 456 PDate: 7/18/17Page: 2 of 3 Rev 6-10

Meter Box Calibration Page 2

 $Y = \underbrace{(Y_{*})(Y_{*})(BP)(T_{m} + 460)}_{(Y_{m})(BP + \Delta H/13.6)(T_{*} + 460)} = \underbrace{79,318,099}_{(Y_{m})(BP + \Delta H/13.6)(T_{*} + 460)} = \underbrace{79,318,099}_{(Y_{m})(SP + \Delta H/13.6)(T_{*} + 80)/13.6)(U_{*}8.3 + 460)} = \underbrace{79,318,099}_{(Y_{m})(SP + 1,724)} = \underbrace{1.0214}_{(Y_{m})(SP + 1,90)/13.6)(U_{*}8.3 + 460)} = \underbrace{79,407,1018}_{(Y_{m})(S} = \underbrace{1.0189}_{(Y_{m})(S} \times \underbrace{1.0189}_$

<u>Y Factor</u>

Variation (± 0.02 Allowed From Average Y)

1.0214	+.00197
1.0189	-10006 ×
1,0182	-10013 t
	· .
D O ED C	

এ১৫১

Avg Y 1,0195X

	•		.е. - 4	METER E DATE 7 Page 3	30X 456- 1 18717 of 3	<u>-P</u>
∆н0	_	$\frac{(0.0317)(\Delta H)}{(Pb)(T_{mo} + 460)}$.	<u>(T_w + (Y</u>	$\frac{460}{(O)}$ (Θ) 2	=	. '
∆н0	=	(0.0317) (BO) (28.40) (74 + 460) 534 -	· [<u>(</u> , 9	528.3 98.3+ 460) (9477) (5.25	11.0) B)] ² =	= <u>2,064</u> 5 t
∆H @	, II ;;	(0.0317) (90) (28.40) (78 + 460) 538	· [(68	28.8 3.8 + 460) (11 9947) (5.159	$\left[\frac{0.0^{5}}{1}\right]^{2} =$	= <u>1.9828</u> X
∆h 0	•==	$\frac{(0.0317)(1.00)}{(28.40)(834460)}$	· [<u>(6</u>	13 + 460) (9 1947,) (5.182	<u>1.5)</u> ² =	= <u>1.9562</u> +
∆ H0	=	(0.0317) () () (+ 460)	· [(+ 460)()] 2 =	
∆H0		<u>(0.0317)()</u> ()(+460)	· [(+ 460)(<u>)</u>] ² =	: <u> </u>

<u></u>	VARIATION	(±	0.20	ALLOWED)
2,0645	+.0633 ×	· 8		
1.9828	0184 2			
1.9562	-10450 t		-	
			·	
60085	5° 4			
AVG AH@ 2.	0012+			

Post Test Meter Box Audit Woodstove Data Sheet #32

Unit: <u>Optimum</u> Date: <u>916/17</u> Technician: <u>Ess</u>

WST9-Form2, Rev 6/11

*	45 G	,-P	N	Aeter Box Te	x Calibra st Data	ation Au	dit		¥ · -	
Run #	1	2	3	4	5	6	7	8	9	10
Avg.∆h	.90						1			
Max Vac	0									
Avg. Test S	Series At	90) in I	H ₂ O Test	Series N	Aax Vac	0	in Ha		
Audit Dev				120. 103				III IIg		ю ц ~
Test Dry G	as Meter	$Mfr: \underline{\rho}$	ocknel		SN: <u>105</u> SN: <u>30</u>	39270	Correc	tion Fact	or $(Y):$	0195
			·	•		Audit	Data			
BP ("Ho).					Audit #1	-	Audi	t #2 Q	Au 2 Q	idit #3
Vac("Hg):				4	0		0	0		0
Audit Mete	er:	Final V	Vol	H	60.11	L	465.	578	4771.	175
		Initial	Vol	45	5.02		460.	483	Hida	.110
		Vol (V	(c, Ft^3)		5.081	X	5.0	95 X	5.0	245X
Audit Mete	er		.,				. <u></u>			
Temp (°F)	(Tc)	Initial			59.5		62	>	· Le	4
		Mid			Le I		63.	5	ای	1.5
		Final			62	X	64	d	x_69	Sv K
		Avg (°	F/°A)	60	0.8×(5)	<u>22.8)</u>	43.51	<u>523.5</u>)	64.5	(524.5)
$\Delta h("H_2O)$		Initial			.90		.90	-	C	0
		Mid		<u> </u>	.90		.90	>		0
		Final		. <u> </u>	,90	/	.90)		10
		Avg			.90		.90	> ^	1	90 x
Dry Gas M	eter:	Final V	/ol	79	5.92	7_	801.	375	BOU	<u>a.986</u>
		Initial	Vol	<u>ר</u>	10.900) *	796.	300	801	<u>,900</u>
		Vol(V _d	(ft^3)		r.027	1	5.0	75 4	5.0	0867
Dry Gas Mo	eter	Initial			<u>15</u>	····· .	_ 67		7	<u> </u>
Temp (°F) :	Inlet	Mid			<u> </u>				<u> </u>	7
(T _m)		Final			7	T	_75	<u>« </u>	X	X X
		Avg(°F	?/°A)	68	7 (52	<u>8.</u> 7)		(531.7)	75.7	<u>(535.</u> 7)'
Dry Gas Me	eter	Initial			<u>65</u>		7		<u> </u>	
Temp ($^{\circ}F$) :	Outlet	Mid			<u>70</u>			\		7
(1 _m)		Final			<u>/ </u>	X	15		< _74	X
		Avg(°F	/~A)	(08.	7 (526	(D)	71.71	<u>531.7</u>)	<u>ר זכר (</u>	(5 <u>35،</u> 7)
Avg Dry Ga Meter Temr	us ∖(T - °	<u>ፍ/የለነ</u>		1, Q	XIE.	7878	7, 7	(5217)	X 755'	(1575-JK
Time (minu	r(⊥m = . tes)	n A J		<u>00</u> In	'no		<u>_/\\/_(</u>	<u>2211/</u> 2	10.7	(333,7)
Time (minutes)				1		10:0	W	10	00	

Note: If volume is in m^3 , multiply by 35.314667 to obtain ft^3 . Note: Add 460° to all temperatures for degrees Absolute.

Back Half Leak Check Stark Stop A 8,470 8.470 ,000 Leg 1 . . .

Leg Z 8.690 8.690 .000

$$Y = \underbrace{(V_c)(MCF)(BP)(T_m)}_{(V_d)(BP + \Delta h/13.6)(T_c)} \qquad \begin{array}{c} 45 \quad \bigcirc -\varphi \\ Y \text{ Factor \% Difference} = \underbrace{Act - Exp}_{X 100} \\ Exp \end{array}$$

Note: MCF = Meter Correction Factor (Y) for Dry Gas Meter used as a Transfer Standard

$$\frac{\operatorname{Run 1}}{\operatorname{Y} = (5,081)(...,9947)(28,49)(68,7) = 76,127.764} = 1.0183$$

$$A\% = (1.0183)(...,10195)(60.6) = 74,761,829\times$$

$$A\% = (1.0183)(...,10195)(1.000) = -.118\times$$

$$M\% = (1.0183)(...,10195)(1.000) = -.118\times$$

$$M\% = (1.0195)(28,48) + .90(13.6)(63.5) = 76,743,738 = 1.019$$

$$A\% = (1.019)(28,48) + .90(13.6)(63.5) = 75,840 + .111\times$$

$$A\% = (1.019)(-1.019)(-1.019)(-1.019) = -.744\times$$

$$M\% = (1.019)(-1.019)($$

Determination of Interpolated Y Factor for Average Certification Test Series ∆ H from Dry Gas Meter Calibration Data:

Revised 7/11

	Dry Gas Meter Calibration Data								
Date: 7/18/17 Technician: ATM ESS									
Calibration Meter Mfr: Rockwell SN: 1052202 Y: 0.9947									
Meter Box ID 511-M Meter Mfr: Rockwell SN: 322914									
Electrical	Check C	k	Pitot Leak Che	eck $N/$	0				
Leak Che	ck Front H	alf OUER		Back Half		-72-	·		
BP = 2.8	44 in I								
	<u>г. г. </u>			1			- "		٦
(Ah)	· · · · · · · · · · · · · · · · · · ·	Gas Volume		· · · · · · ·	Iemper			-1000 (Θ) .	
in.		Cal.	Dry Gas		Cal.	Dry Ga	s Meter	Min.	
H ₂ O		(Vc).	(Vm).		(Tc).	Inlet	Outlet	1	
		(cu.ft.)	$(m^{3})(ft^{3})$		°F	(Tmi),	(Tmo),		V.
	·								_
.70	initial	365.620	430.600	initial	60.5	62	6	4	۲ C
.70	final	370.750	435.831	mid	61	64	63	11:30	0
-0	-	x	<u> </u>	final	62	65 X	63		0
. 10	total	5.130	5.231	avg.	61.2	63.7 X	62.3%	<u>43</u>	
			.455 Ft / min.		521.2	523.7	<u>5223</u>	523	-
.75	initial	371.419	436.500	initial	62	65	64	4	0
175	final	376.564	441.722	mid	63	67	65	11:00	0
:75			X THE X	final	63.5	<u>68</u>	65 X	×	0
	total	5.145	5,222 X	, avg.	62.8	lde.7	64.7	65.7	ł
0.0		2 0.20	1975 HA:/MIN		524.01	5/20.1-	529.71	545.71	
.80	final	200 200		mid	02.5	19	100		
.80	IIIIai	302.000	די ביז בר	final	44.5	1,9	67	10:30	
.80	· total	SOUX	5.114×	avg.	(42X	1.0.2*	K ALLAN	1.7.57	0
		10.001	487613/		524.2	528.3	526.74	527.5	1
185	initial	382.983	448.200	initial	64.5	69	67		0
.25	final	389,101	453,278	mid	64.5	70	68	10:15	0
0.0				final	65.5	70	68		0
.85	total	5.118 X	5.178X	avg.	64.8 ^X	69.7X	67.7×	68.7	
		, at	,505 ft. 1 min.	· ·	524.81	529.7×	527.7 ⁴	528,7 *	[_
1.90	initial	388.710	454,000	initial	66	70	69		0
.90	final	393.860	459.214	mid	65.5	71	69	10:00	0
90				final	66.5	12	69	X	0
10	total	5.1427	512141	avg.	1001	714	5094	70'	
V-	(V)((1/2)/ DL	$(T_m \perp 160)$	1321 #4.7 Min' Ah@= ((x 10317)(Ab)	5760 ° \ [(To ± 4	501 (Q) 1	₩7 Ω	2007	
I = -0	<u>(1)(Pb</u> +∆h/	13.6) (Tc + 460)	$\frac{1}{2} \frac{1}{2} \frac{1}$	b(Tmo + 46)	. [(10 - 4))	(@)[/		7 1 *	
			/ -		· ·				

Back Half Leak Check Manometer Reading Manometer in H2O 9.75 " Shar 8.60" Leg 2 Leg 1 9.75" 8.60 gete 60.0 0,00 0K ok A From Half Leak Chick VAC Meter Reading In. Hg Stater Stop Leak Rote cfm CMM ,656,658 DGM 1002 -17.0 .674 .674 ,000 -17.0 JM

Meter Box:	5	-11	M	
Date:	7/	18	רול	
Page:	2 of	3		
		R	ev 6.	.10

Meter Box Calibration Page 2

 $Y = \frac{(Y_c)(V_c)(BP)(T_m + 460)}{(V_m)(BP + \Delta H/13.6)(T_c + 460)}$

$$Y = \underbrace{(.9947)_{(5.130)}_{(5.231)} (28.44)_{(29.44)}_{(29.44)} (63 - +460)}_{(5.231)_{(28.44)} (28.44)_{(28.44)}} (28.44)_{(28.44)}_{(5.241)_{(28.44)}} = \frac{75.899.823}{77,679.066} = \frac{0.9771}{77,679.066} \times Y = \underbrace{(.9947)_{(5.145)}_{(5.222)_{(28.44)}} (28.44)_{(05.74460)}_{(5.222)_{(28.44)}} (28.44)_{(05.74460)}_{(5.223)_{(28.44)}} = \frac{76.514.733}{77,793.507\times} = \underbrace{0.9836}_{77,793.507\times} \times \underbrace{0.9836}_{77,793.507\times} \times \underbrace{0.9836}_{77,793.507\times} \times \underbrace{0.9885}_{76,738} \times \underbrace{0.9885}_{727.55} \times \underbrace{0.9885}_{76,738} \times \underbrace{0.9885}_{727.55} \times \underbrace{0.9885}_{727.55} \times \underbrace{0.9885}_{726.73} \times \underbrace{0.9885}_{726.73} \times \underbrace{0.9885}_{726.73} \times \underbrace{0.9885}_{726.73} \times \underbrace{0.9885}_{77,453.104} \times \underbrace{0.9863}_{77,453.104} \times \underbrace{0.9863}_{77,453.104} \times \underbrace{0.9863}_{77,453.104} \times \underbrace{0.9863}_{726.73} \times \underbrace{0.9885}_{726.73} \times \underbrace{0.9885}_{726.73} \times \underbrace{0.9885}_{77,453.104} \times \underbrace{0.9863}_{77,453.104} \times \underbrace{0.9863}_{77,453.104} \times \underbrace{0.9863}_{77,453.104} \times \underbrace{0.9863}_{78,180.03} \times \underbrace{0.9864}_{78,180.03} \times$$

<u>Y Factor</u>	<u>Variation</u>	(± 0.02 Allowed From Average Y)
0.9771	<u>-,0076</u>	<u>×</u>
0.9836 -	-,00117	
0,9885 -	+.0038-	<u>×</u>
0.9.883 -	+.00361	
0.9861	+.0014	_

Avg Y 0,9847

4.9233

					METER	BOX 4	511 A	1	
					DATE	דו אולד	·		
					Page	3 of 3			
		·			rage .				
∆H0	-	$\frac{(0.0317)(\Delta H)}{(Pb)(T_{mo} + 460)}$	<u>(T</u>	, + 460) (Y _c) (V	(<u>Θ)</u> ' _ο)	² _		,	
∆н0	=	$\frac{(0.0317)(.70)}{(28.44)(.62.3+.460)}$	· [521, (61,2+ (,9947	2 460) (2) (5,1	(115) 130)	2 =	2.0611	٢
∆не	.	(0.0317) (っち ギ) (28,44) (し4,7+ 460) メージョン	∽.[522.8 (62.8+ (.9947	<u>، (5, ۱</u>	45X) _	2 =	2.01184	
∆н0	=	$\frac{(0.0317)(.80^{3})}{(28,44)(40,7+460)}$	· [524.27 (64.2+ (.9947	<u>460) (</u>) (5.4	10.5)	² =	2.0238	-
∆н@	=	(0.0317) (.85. ×) (28.44) (67.7 + 460)	·[524.8 (64.8 + (,9947	<u>460) (</u>) (5.1	10.25)	2 =	2.0045	<
∆н0 ;	-	$\frac{(0.0317)(.907)}{(28.44)(.97+460)}$	·	526 (66 + (.9947	<u>460) (</u>) (5.1	<u>10)</u> 42)	2 =	2.0056	K
						-			

<u>∆H0</u>	VARIATION	<u>(±</u>	0.20	ALLOWED)
2.0611	+.0397×			
2.0118 X	-,0096×	•		
2.0238	+.0024 +			•
2.0045	-10169 X			
2.0056	-10158 Y			
AVG AHO 2.02	<u>-14 ×</u>			
.6	INV.			

Post Test Meter Box Audit Woodstove Data Sheet #32

Unit: Optimum Date: 9/6/17 Technician: ESS WST9-Form2, Rev 6/11

į.

SII-M Test Data											
Run #	1	2	3	4	5	6	7	8	9	10	
Avg.∆h	.85										
Max Vac	-2.0										
L				<u>.</u> .			. L	<u>i </u>	[
Avg. Test S	Series ∆ł	n:85	<u> </u>	H ₂ O. Test	t Series M	Max Vac:	-2.0	_in Hg			
Audit Dry	Gas Met	ter Mfr:_p	Lockwel	.t	SN: 105	52202	Correc	tion Facto	or (Y):	9947	
Test Dry G	as Meter	r Mfr: <u>P</u>	xkwell		SN: <u>32</u>	<u>2914</u> Audit	Correc	tion Facto	or (Y):	9847	
					Audit #]		Audi	t #2	A	ıdit #3	
BP ("Hg):					<u>28.48</u>	<u>}</u>	28.	50	2.8	.50	
Vac("Hg):					-2.0		-2.	0	-2	-2.0	
Audit Mete	er:	Final V	/ol	<u> </u>	78.25	0	483.760 489			. 531	
		Initial	Vol		73,02	9	478.	659	484	484.299	
		Vol (V	c, Ft ³)		5.221	X	5.1	017	5.	232 4	
Audit Mete	r									λ,	
Temp (°F) ((Tc)	Initial			64		<u> </u>	. <u></u>	Lel	0	
		Mid		·	64		_65		_ lola	1	
		Final			Cell VIX 10	-x	_65	د	<u> </u>	is x	
A1 (611 O)		Avg (°]	F/°A)	ف	<u>4^ (5)</u>	24)	_65	<u>525</u>)	65.8	<u>3 (525.8)</u> \	
$\Delta n(^{-}H_2O)$		Initial			.85		<u>8</u>)	8		
		Mid Einal			<u>,05</u> 06		.00	<u> </u>		<u> </u>	
		Finai		<u> </u>		28	0) E X	<u>+ ð</u>	2	
Driv Gas Ma	ator	Avg Final V	<u></u>		100 m	<u> </u>			<u> </u>		
Dry Ods Mi		Initial V	ର ଜୀ	<u>(00</u> (1,4	9 200	<u>7</u>		61/	<u>مان ار ا</u>	800	
		Vol(Va)		<u> </u>	5.386	,X	<u> </u>	47×	<u> </u>	5 244 X	
Dry Gas Me	eter	Initial		<u>. </u>	<u></u>	<u>/</u>			 /.¢	<u>)</u>	
Temp (°F) :	Inlet	Mid			107		109			· · · · · · · · · · · · · · · · · · ·	
(T _m)		Final			68	 }	(9)		x 71		
		Avg(°F/	⁄°A)	7 کی	× 152	2)	48.3	(528.3)	70"	F(530)X	
Dry Gas Me	ter	Initial			15		67.	and the second se	108		
Temp (°F) :	Outlet	Mid			06		67		68		
(T_m)		Final			<u>lo</u>	- *	68, X 69.				
		Avg(°F/	′°A)	65.	7 625	<u>(7.</u>	67.3 "(5273)	1 68.3	(5283)	
Avg Dry Ga	S				X	<	- it		X	K K	
Meter Temp	(T _m - °I	F/°A)		66	.3 (521	<u>e</u> .))	67.81	<u>:527.</u> 8)	69.2	(529.2)	
Time (minut	es)	3.			15	<u> </u>	10:00)	1011	5	

Note: If volume is in m^3 , multiply by 35.314667 to obtain ft^3 . Note: Add 460° to all temperatures for degrees Absolute.

1

Note: MCF = Meter Correction Factor (Y) for Dry Gas Meter used as a Transfer Standard

$$\frac{\text{Run 1}}{\text{Y} = (\underbrace{5.221}_{(5.386)})(\underbrace{.9947}_{(28.48)} + \underbrace{.85}_{(13.6)}(\underbrace{.66.3}_{(524.3)}) = \underbrace{77.8421}_{(9.479)} \underbrace{9497}_{(9.554.470)} \\ \Delta\% = (\underbrace{.9663}_{(-9.470)}, \underbrace{.9847}_{(524)}) \times 100 = \underbrace{-1.819}_{(-1.819)} \\ \Delta\% = (\underbrace{.9447}_{(-9.447)})(\underbrace{28.50}_{(-9.470)}, \underbrace{.9847}_{(-527.8)}) \\ Y = (\underbrace{.5.247}_{(-5.247)})(\underbrace{.28.50}_{(-28.50)}, \underbrace{.6525}_{(-525)}) \\ \Delta\% = (\underbrace{.9701}_{(-9.447)}, \underbrace{.9847}_{(-529.2)}) \times 100 = \underbrace{-1.483}_{(-9.470)} \\ \times 100 = \underbrace{-1.483}_{(-1.483)} \\ \times 100 = \underbrace{-1.844}_{(-1.483)} \\ \times 1000 = \underbrace$$

Determination of Interpolated Y Factor for Average Certification Test Series ∆ H from Dry Gas Meter Calibration Data:

Back Half Leak Check Start Stop Δ 8:920 ,000 Leg 1 8.920

9,070 .000 9.070

Leg 2
Revised 7/11

•	1 .	1	Jy Oas Meter	Calibration	Jala				
Date: 7	19/17		Techni	cian: <u> </u>	5		-		
Calibrati	on Meter Mfr	ROCKWEI	11 SN:	1052202		Y:9	947		
Meter Bo	x ID Train	<u>3</u>	Meter Mfr:	Limmon		SN: 800	54745		
Electrical	Check o	feir	Pitot Leak Che	eck N/A					
Leak Che	ck Front H	alf NJer		Back Half	DVer				
$BP = 2\beta$.45 in F	τσ							
	<u> </u>			I	<u>.</u>			r	-7
Orifice (Ah)		Gas Volume	;		Temper	rature		Time	
in.		Cal.	Dry Gas		Cal.	Dry Ga	as Meter	Min.	
H ₂ O		(Vc)	Meter (Vm)		Meter (Tc)	Inlet	Outlet	1	
	1	(cu.ft.)	$(m^3)(ft^3)$		°F	(Tmi),	(Tmo),		
						(F)(C)	(°F)(°C)		` [
100	initial	431.009	0,5900	initial	65	69	68		
· [oD	final	436.0le4	0.7390	mid	65.5	ור	69	12:00	
100			-1490-3	/ final	66	71	69		
100	total	51055 X	5.262 A.3	avg.	65.51	70.3X	68.7	69.5	
			.438(4. ³ /min.		525.51	530.3*	528.7×	529.51	4
110	initial	436,950	07650	initial	106	70	69		0
110	final	441.796	0.9138X	mid	66	72	69	11:00	0
10			· 1488 m3	<u>final</u>	66	72	70		10
	total	5,0462	5.25574.9	avg.	1001	71.3	693	70.3	
<u>.</u>	initial	1 489 L	1778F47/min	initial	5267	<u>531.5 -</u>	529.31	530.3	
.7.	final		1.0904 x	mid		-70	70	1015-	
120		A CONTRACTOR OF A CONTRACT	1504m3	final	67	73.	69	10130	
,120	total	S 107 X	5.211213	avg.	Laboration X	71.5×	1.9.3×	70.5	6
			0500A.8/		526.7X	531.74	529.3	530.5-	t
135	initial 🤋	448/668	1,1100	initial	67	70	70		0
135	final	453.883	1.2638	mid	107	73	70	10:00	0
125			· 1538 ~3	final	67	73	70		0
.1.00	total	5.215X	5.4314.3	avg.	674	72 ×	70 X	JX I	1
		8,5	543 Ft. 3/min.	ta de tant	527X	532	530X	5314	
	initial		· · ·	initial					
	final			mid					i.
		I		final					
	total			avg.				an an an an an an an an an an an an an a	-</td

Y= (Y)(Vc)(Pb)(Tm + 460) $(Vm)(Pb + \Delta h/13.6) (Tc + 460)$

 $\Delta h @= (0.0317)(\Delta h) [(Tc + 460) (\Theta)] / [(Vc)(Yc)]^{2}$ Pb(Tmo + 460)

Back Half Leak Check

Front Half Leak Check Leak Rate Meter Reading VAL CFM Stop Start CMM DGM -17.2 ,000 ,0000 10175 0175 000 1387 .387 TM -17.2

Meter Box: <u>Train</u> 2 Date: <u>7/19/17</u> Page: 2 of 3 Rev 6-10

Meter Box Calibration Page 2

 $Y = (Y_c)(V_c)(BP)(T_m + 460)$ $(V_m)(BP + \Delta H/13.6)(T_c + 460)$

$$Y = (-,9947) (5.055) (29.45) (09.5+460) = 75,740.310 = 0.9626 (5.262) (29.45+.100) (13.6) (5.5+460) = 78,689.732 (5.255) (28.45+.100) (13.6) (5.5+460) = 75,725.694 = 0.9627 (5.255) (28.45+.100) (13.6) (56-+460) = 75,725.694 = 0.9627 (5.255) (28.45+.100) (13.6) (56-+460) = 76,0000 = 76,0000 = 76,0000 = 0.9621 (5.311) (28.45+.100) (13.6) (56-7+460) = 76,00000 = 0.9631 (5.311) (28.45+.100) (13.6) (56-7+460) = 76,000000 = 0.9631 (5.311) (28.45+.100) (13.6) (56-7+460) = 76,0000000 = 0.9631 (5.311) (28.45+.100) (13.6) (56-7+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.431) (28.45+.135) (13.6) (57+460) = 78,365.196 = 0.9621 (5.45) (52.$$

$$Y = ()()(+ /13.6)(+ 460)$$

 Y Factor
 Variation
 $(\pm 0.02 \text{ Allowed From Average Y})$

 0.9626 0.0000 0.0000

 0.9627 ± 0.0001 ± 0.0001

 0.9631 ± 0.0005 ± 0.0005

 0.9621 -0.0005 ± 0.0005

Avg Y 0,9626X

Post Test Meter Box Audit Woodstove Data Sheet #32

ſ

(

Unit: <u>Offinan</u> Date: <u>9/6/17</u> Technician: <u>ESS</u> WST9-Form2, Rev 6/11

T	rain 3	5	N	Aeter Boz Te	x Calibra <u>st Data</u>	tion Aud	lit				
Run #	1	. 2	3	4	5	6	7	8	9	10	
Avg.∆h	.12										Ì
Max Vac	-1.5										
Avg. Test S	Series ∆ł	n: <u>-)</u> Z	in l	H ₂ O. Tes	t Series N	ſax Vac:_	-1.5	_in Hg			
Audit Dry Test Dry G	Gas Met as Meter	ter Mfr: r Mfr: <u></u>	mmon	<u>ell</u>	SN: <u>10</u> SN: <u>80</u>	52202 54745 Audit 1	Correc Correc Data	tion Facto tion Facto	or (Y): or (Y):	.9947 .9626	
BP ("Hg): Vac("Hg):			·		Audit #1 2 <u>8.48</u> -1.5		Audi <u>28.4</u> -1.5	it #2 4	A 	udit #3 3.42 1.5	
Audit Mete	er:	Final V Initial Vol (V	/ol Vol c, Ft ³)	44 -44 -5	16161 21.225 .236 4		<u>502.</u> <u>497</u> 5.1	364 1221 43×	<u>502</u> 50	<u>8.177</u> <u>3.073</u> .104 X	
Audit Mete	er						<u></u>			<u> </u>	
Temp (°F)	(Tc)	Initial Mid Final	E /9 A)	(67 15 68		اما 8ما 68ما 100 ع	3 .5 .5 X	00 	1.5	X
$\Delta h("H_2O)$		Avg (1) Initial Mid Final	' A J		.12 .12 .12 .12	— — —	12 12 12	×	<u>ا،</u> ا، 	2 2 12	シ
Dry Gas M	eter:	Final V Initial V Vol(V _d)	ol Vol	<u>لى</u> بەك 154	4146 4600 16×3 (5	- - - - - - - - - - - - - - - - - - -	.1520m ²	390 370 (5.368 f	<u> </u>	9604 3100) m ³ (5.311 F	¥ 21,3)
Dry Gas Me	eter	Initial			0	_		· · · · · · · · · · · · · · · · · · ·	7	3	
Temp (°F) :	Inlet	Mid			71		73		٢	1	
(T _m)		Final Avg(°F.	/°A)	-71	72 × (531	5X	<u>-74</u> 72.7	X/ /532.71	ץ <u>קי</u> א אל	- 15341)+	ж. Г
Dry Gas Me	eter	Initial	~	(9	<u>~</u>	71				
Temp (°F) :	Outlet	Mid	• '	يا	, q	_	11		71		
(T _m)		Final Avg(°F/	/°A)	<u>ح</u> او	U .3 (52	1.3)X	712	(531)	72	531.3)	ヤ
Avg Dry Ga	is	- `			t	X	X	- 4	/ <u></u>	X	+
Meter Temp	(T _m - °	F/°A)		70	.2'(53	2,2)	71.8 (531.8)	72.7	(532.7))`
Time (minu	tes)	3			:45	-,	10:30)	10	30	

Note: If volume is in m^3 , multiply by 35.314667 to obtain ft^3 . Note: Add 460° to all temperatures for degrees Absolute.

,410

$$WST9-Form2, Pg 2, Rev 5/10$$

$$Y = (V_c)(MCF)(BP)(T_m)$$

$$(V_d)(BP + \Delta h/13.6)(T_c)$$

$$Y = Contended a for the formula of the fo$$

Note: MCF = Meter Correction Factor (Y) for Dry Gas Meter used as a Transfer Standard

$$\frac{\text{Run 1}}{\text{Y} = (5, 136) (.9947) (28,48) (70.2) = 78,645,063 = .9585} \text{ (5.460) (28,48 + .12 /13.6) (67.5) (527.$$

Determination of Interpolated Y Factor for Average Certification Test Series ∆ H from Dry Gas Meter Calibration Data:

 $_{\rm L} = _{\rm L} Calculated Calibration Y Factor$ (C) (from Calibration)inch $H_2O \Delta h =$ Calculated Calibration Y Factor (D) (from Calibration) **(B)** _____=__/_ <u>X100</u> = _____(E) **(E) (D) (F) (B)** (A) $\frac{1}{\operatorname{Avg}\Delta h} - \frac{1}{\operatorname{(A)}} = \frac{1}{\operatorname{(C)}} \times 100 = \frac{1}{\operatorname{(C)}}$ $\left(\begin{array}{c} & X \\ \hline F \\ \hline \end{array} \right)^{+} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{+} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \\ \hline \end{array} \right)^{-} \left(\begin{array}{c} & - \\ & C \end{array} \right)^{-} \left(\begin{array}{c} & - \\$ Interpolated Y Factor For Avg. Test Series Δh .000 Dry Gas Meter Back Half Leak Check:_ inch H₂O in One Minute Leak Rate Front Half Leak Check Meter Reading Start Stop cmm cfm Meter Vac In. Hg . 4170 ,000 DGM - 18.0 4170 .0000. .7'08 .708 ,000 18,0 TM

Back Half Leak Check A Stort Stop 7,490 7,490 .000

S-110-1052202 My. nsuiting AS78123.xls

-,

-					AF ISIN	EX INSTRUM	MENTS REFE	RENCE METER	R CALIBRATI	NO						
	nsing	nsing	nsino	nsino		WET-TESI	Myren C	VEG 15-POIN onsulting	IT ENGLISH (STIN						
tion Meter Information						Calibratio	n Conditions								,	
odel# AL-20 Date	L-20 Date	Date	Date	Date		Time	23-May-17	9:45	·		·	Std Temp	528	ۍ ۲		
eral # 11AE6 Barometric Pres	1AE6 Barometric Pres	Barometric Pres	Barometric Pres	Barometric Pres	Pres	sure	29,45	pH ui				Std Press	29.92	in Hg		
	Calibration Techn	Calibration Techn	Calibration Techn	Calibration Techn	Techn	Ician	EW		•			ž	17.647	°R/in Hg		
DGM Serial Numt	DGM Serial Numt	DGM Serial Numt	DGM Serial Num	DGM Serial Numb	I Numb	e.	S-110	1052202	·			·				
Calibration Dat	Calibration Dat	Calibration Dat	Calibration Dat	Calibration Dat	on Dat									Boeide		_
Meter Volume Samola Orielist Tama Avia	Dry Gas Meter olume Volume Samole Ordef Town Code	Ury Gas Meter Volume Samole Contract And	S fileter Samole Outlet Town Outlet	Outlat Tame Dust					Calibratic	in Meter				Dry Gas Meter		
Pressure Initial Final Volume Initial F	nitial Final Volume Initial F	Final Volume Initial F	Volume Initial F	Initial	ι. Έ	Inal	Initial	Final	Volume	Outlet Temp Initial	Outlet Temp	Meter	Calibrativ	n Factor	Flowrate	
Tem Vrad Vvrad (Vrad) (frad) (frad) <th(frad)< th=""></th(frad)<>	tvanu (Vad (Vad) (Vad) (fad)	(Vnd) (Vnd) (tru) cubic feet cubic feet "F	Cubic feet "F	(tm) "F		<u>)</u> .	(VW) Cubic feet	(Vw.) cubic feet	(V _{III}) cubic feet	Ĵ.#	Ĵ.	P (wind 1	ε	(47)	(Qm(stoftcort)	
-5.0 194.550 200.678 6.128 75.2 7	4.550 200.678 6.128 75.2 7	200.678 6.128 75.2 7	6.128 75.2 7	75.2 7	~	5.2	181.490	187.530	6.040	74	74	56	U DAND	10000		Variation
-5.0 200.678 206.811 6.133 75.2 7	0.678 206.811 6.133 75.2 7	206.811 6.133 75.2 7	6.133 75.2 7	75.2 7		5.2	187.530	193.570	6.040	74	74	2.5	0 9937	-0.004	1 150	from overal
-5.0 206.811 212.942 6.131 75.2 7	6.811 212.942 6.131 75.2 7	212.942 6.131 75.2 7	6.131 75.2 7	75.2 7		7.0	193.570	199.600	6.030	74	74	2.5	0.9935	0.0000	1 166	averade Y
							`	·		Passed Ca	libration Fac	tor Variation	0.9936	Averages	1.168	-0.0011
-3.9 236.755 242.762 6.007 77.0 7	6.755 242.762 6.007 77.0 7	242.762 6.007 77.0 7	6.007 77.0 7	77.0 7		7.0	223.190	229.100	5.910	74	74	60	0 0013	0,000		Variation
-3.9 242.762 248.785 6.023 77.0 7	2.762 248.785 6.023 77.0 7	248.785 6.023 77.0 7	6.023 77.0 7	1.0		0.7	229.100	235.030	5.930	74	74	0		2000.0	0.800	from overall
-3.9 248.785 254.816 6.031 77.0 7	8.785 254.816 6.031 77.0 7	254.816 6.031 77.0 7	6.031 77.0 7	77.0 7	7	7.0 .	235.030	240.965	5,935	74	74	23	0.9935	-0.001	0.820	average Y
										Passed Ca	libration Fac	tor Variation	0.9936	Averages	0.955	-0.0011
-2.9 254.816 260.260 5.444 77.0 77	4.816 260.260 5.444 77.0 77	260.260 5.444 77.0 77	5.444 77.0 77	77.0.77	12	0	240.965	246.320	5.355	74	74	51	0 9911	00000		Variation
-2.9 260.260 265.694 5.434 77.0 77	0.260 265.694 5.434 77.0 77	265.694 5.434 77.0 77	5.434 77.0 77	77.0 77	L.	0	246.320	251:670	5.350	74	74	2.1	0.9920	0.0000	0.740	from overall
-2.9 265.694 271.134 5.440 77.0 77	5.694 271.134 5.440 77.0 77	271.134 5.440 77.0 77	5.440 77.0 77	22 0.77	2	0	251.670	257.030	5.360	74	74	2.1	0.9927	0.0008	0.741	average Y
				. .						Passed Ca	libration Fac	tor Variation	0.9919	Averages	0.741	-0.0028
-2.3 271.134 276.689 5.555 77.0 77	1.134 276.689 5.555 77.0 77	<u>276.689 5.555 77.0 77</u>	5.555 77.0 77	7.0 77	2		257.030	262.530	5.500	74	74	1.9	0.9966	0.0004	0.533	Variation
-2.3 276.689 282.223 5.534 77.0 77	6.689 282.223 5.534 77.0 77 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	282.223 5.534 77.0 77	5.534 77.0 77	12.0	5	Q	262.530	268,000	5.470	74	74	1.9	0.9949	-0.0013	0.530	from overall
		11 1 011 1 ZIGG 1 GGT 102	1) n'1) zice		7		268.000	273.460	5.460	74	74	1,9	0.9970	0.0009	0.529	average Y
						ļ				Passed Ca	libration Fac	tor Variation	0.9962	Averages	0.530	0.0015
-2.0 218.936 224.887 5.951 77.0 7	8.936 224.887 5.951 77.0 7	224.887 5.951 77.0 7	5.951 77.0 7	77.0		2,0	205.510	211.410	5.900	74	74	. 1.8	0.9974	-0.008	0.381	Variation
-2.0 224.887 230.820 5.933 77.0 7	4.887 230.820 5.933 77.0 7	230.820 5.933 77.0 7	5.933 77.0 7	7.0 7	-	0.7	211.410	217.300	5.890	74	74	1.8	0.9987	0.0006	0.380	rom overall
-2.0 230.820 236.755 5.935 77.0 77	0.820 236.755 5.935 77.0 77	236.755 5.935 77.0 77	5.935 77.0 77	77.0 77	F	0	217.300	223,190	5.890	74	74	1.8	0.9984	0.0002	0.380	average Y
										Passed Cal	ibration Fac	tor Variation	0.9982	Averages	0.381	0.0035
									-	Overall	Average Y		0.9947	0		Passed
went rowwr 1, une rauto of the feading of the calibration meter to the dry gas meter, accept	e or me reacing of the calibration meter to the dry gas meter, accept	uing of the calibration meter to the dry gas meter, accept	tion meter to the dry gas meter, accept	dry gas meter, accept		able toleranc	se of individual val	lues from the aven	age is +-0.02.							
above Lry Gas Meter was calibrated in accordance with USEPA Methods, CFR is calibrated using the American Bell Prover # 3785, certificate # F107 which is the	ster was calibrated in accordance with USEPA Methods, CFR the American Bell Prover # 3785, certificatia # F107 which is to	alibrated in accordance with USEPA Methods, CFR an Beil Prover # 3785, certificate # F107 which is to	ordance with USEPA Methods, CFR # 3785, certificate # F107 which is th	SEPA Methods, CFR (te # F107, which is +	CFR S	40 Part	60, using the Pr	recision Wet Tes	t Meter # 11AE	ġ.	,					
ignature Clan LAN	the later and and a second sec				Ę I	מ וומהפחיים	10 UPE NauOIIai	Bureau or Stand	lards (N.I.S.T.).	ы С	125/	N				

41

S-110-1052202 My.... Consulting AS78123.xts

Calibration Date: 5-23-2017

Meter Gamma vs Flowrate

Calibration Technician: EW

Consulting AS78123.xts S-110-105220

> 5-23-2017 Calibration Date:

Calibration Technician:

§ ₩

Console Serial:

1052202

S-110 Console Model:

VANEOMETER CALIBRATION

Myren Consulting used a Dwyer Model 3480 Vaneometer to measure test chamber air velocity. The manufacturer's specifications for accuracy are \pm 5.0% from 0 to 100 fpm and \pm 10% from 100 to the top of the scale. Myren Consulting insures that the instrument is level and clean prior taking each reading. According to EPA personnel (Westlin, RTP) no further calibration is necessary.

DRAFT GUAGE CALIBRATION

Myren Consulting used a Dwyer Model 115 AV, a -0.05 - 0.0 - 0.25'' inclined red oil manometer (readability resolution $\pm 0.001''$ H₂O) to measure the static pressure in the stack. Once leveled and zeroed as per the manufacturer's written operating instructions, the Dwyer manometer is a primary standard and needs no further calibration.

The manometer is leveled and zeroed at the start of each test, checked as necessary during a run to verify that the settings have not changed and again at the end of each test run. The results of these checks are recorded on Woodstove Data Sheet #16 in each individual test.

BAROMETER CALIBRATION

Myren Consulting used a Princo Model 453 SN W14275 Mercury barometer and a Weems and Plath aneroid barometer to measure the barometric pressure (BP). The Weems and Plath barometer was calibrated daily by comparing it to the Princo and adjusting it as necessary. The Princo when calibrated following the manufacturer's instructions is a primary standard and needs no further calibration.

MOISTURE METER CALIBRATION

Myren Consulting uses a Delmhorst J-2000 which was calibrated daily using the "Check" feature. Then the operation of the moisture meter was checked with a Delmhorst Moisture Content Standard Model MCS-1 at 12.6 and 23.8%. The results of these checks are recorded on Data Sheet #10.

The readings obtained with the moisture meter are then corrected as per the manufacturer's written instructions for temperature. If Delmhorst #496 insulated pins are used, the meter is set at 222 using the Set Pin Calibration instructions. The meter is set at 1 for the Species correction. 1 is the setting for D. Fir

	3. To decrease the temperature value, press and release the TEMPERATURE button then hold the SPECIES button within one second. Hold the SPECIES button until the desired temporation within one second.	 To change between Fahrenheit and Celsius press and release the TEMPERATURE button and within one second press the CALIBRATION CHECK button and release when you are in the mode needed. 	SET PIN CALIBRATION	 To change between insulated and un-insulated pin setting, press and release the SPECIES button, then press the CALIBRATION CHECK button within one second to cycle between 222 for insulated and 444 for un-insulated pins (the default setting is un-insulated). CHECK CALIBRATION 	 Press the READ button and the CALIBRATION CHECK button simultaneously. Meter is in calibration if it displays 12% (+ or2). Make sure the pins are not in contact with anything when checking the calibration. REVIEW ACCUMULATED READINGS 	 The meter will accumulate up to 100 readings. To view the readings press and release the CALIBRATION CHECK button. The meter displays the number of accumulated readings, then the average of those readings, then the highest stored reading. To erase readings hold the CALIBRATION CHECK button down for 5 seconds. All accumulated readince will box conservent at the 	display "0" RESET METER	 Press and release the CALIBRATION CHECK button. Within one second press the SPECIES button. Default settings will be restored (Species #1 Douglas Fir and 70°F temperature). The meter will display 170. Any previously stored readings will be erased. 	Delmhorst Instrument Co. 51 Indian Lane East Towaco. NJ 07082 Ph: W77-DELMHORST (877) 335-6467 Fax: 973-334-2657 Web Site: <u>www.delmhorst.com</u> 10/07
Delmhorst Instrument Co.	J-2000 Quick Reference Guide			SPECIES TURE	CHECK	Fig. 1 Button Definition GETTING STARTED	 Set the wood species by holding down the SPECIES button until the desired scale number is displayed. The default species setting is #1 Douglas Fir (see Species Code Chart for a full listing). 	2. Align the contact pins parallel to the grain and push them to their full penetration into the wood and press the READ button. The meter displays the %MC for two seconds. SET TEMPERATURE	 Temperature correction is necessary if the wood temperature is outside the range of 50°F (10°C) to 90°F (32°C). The default temperature setting is 70°F. To increase the temperature value, hold the TEMPERATURE button until the desired temperature value is displayed.

WST6-form16,pg4.Rev 1/10

Ì.

Woodstove Data Sheet #26-A CEM Gas Train Response Time Semi Annual Check

Date Technicians	7/19/18 ATM			andre and an an and a strategy size of the second	framer water (Barris of June 1994)			**			
Elapsed Time	CO ₂ Conc.(V)	CO ₂ Conc.(V)	CO ₂ Conc.(V)	CO Conc.(V)	Cone.(V)	CO Conc.(V)	O2 Conc (V)	6	2	07	02
0 Seconds	. 284	.281	947	1.65	1.68	1.69		CUBC(V)		Conc.(V)	Conc.(V) Conc.(V)
15	1283	, 280	bti	1.66	1.68	60					
30	691"	167	165	1.63	-64	101					
45	1801	.086	080	. 90	92	10					
60	,019	.024	120.	.63	63	17					
75	(00 4)	184	1981	107	677	1					
90	003	13	003	· · ·	11.	29					
105	.003	003	.003		20	200					
12.0	602	82	1007		100				*		
135	C C C C	202	CUC								
150				2	2	5			i		
		100	100	9	104	P C					
CO	- 00	001	8	0	, o u	40.			1		
180	1.001	, 00 /	00	02	.03	0.					۰. د.
Initial Response	> 2	> 151	7 15,	7 30,	> 30.	1 2.0.					
Fime (seconds)	< 30 1	20	1 30	×∎√	~~ ~~	2 A A					
95% Response	20	> 60	760	7105	2010	201 2					
Time (seconds)	< 1 5	< 75	14V	2120	c 120	212					
Analyser Flow Rate	Ass.		and the second second second second second second second second second second second second second second secon	Standard Stranger	and a second second second second second second second second second second second second second second second	A					
Comments: or 0/		10									
0 N	T - 7 - 4	5		ອ	90	09					

Myren Consulting Inc.

Analyzer: Calibrated Range: 0-25 % Output: 0-1.0 v. Flow: 1.5 scfh Measured by: Rotameter: X Mass Flowmeter:

			<u> </u>		Calibra	ation R	esults					
Point	Cyl.	%	Expe	ected	Act	tual	A	tj.	%	Curve	Potenti	ometer
#	# <u>.</u>		Meter	DVM	Meter	DVM	Meter	DVM	Dif.	Conc.	Unadj.	Adj.
1	1	0.00	00,0	,000	ODD	-,001	00,0	.002	പ്പ	next	4.80	4.90
2	2	12.45	49.8	.498	48,0	,485			lag	Ŷ		
3	3	21.0	840	.940	830	.036	Will TP	at the second second	é		bshale.	METGIA.
4	4	6.04	14.2	.242	22.5	,228	1	(term			burters	6989
5	1	0.00	00.0	.000	0,00	000	61201	100000			458269	30084
~		- C 2						-				

Comments:

í

.485 ,820

I.

Myren Consulting Inc.

Pre-Optimum EPA 2 512 Williams Lake Rd; Colville, WA 99114; (509)685-9458

QA WS, REV 1/10

CO Analyzer Multipoint Calibration Report Form bluille, WA Date: 9/5/17 Site: Maren CAI Analyzer: Make: Model: 200 SN: 1M12002 Calibration by: ATT Mynew Cal Gas Flow: 1.5 dscfh Measured by: Rotameter: X Mass Flowmeter: Priveo "Hg Instrument ID: BP: 28.5R °F Instrument ID: Omega 1 hairch tok Temp: 61 3 Analyzer Last Calibrated: Cylinders: #JAA 22.665 Concentration: 1. 7.00 %CO Cyl. Press.: 1680 psi. Certified By: Date: 2/25/ XOLAC 261 2. # OOH 1761 Concentration: %CO Cyl. Press.: 200 psi. Certified by: Ligued Technology LORA Date: 3. #250 - 1175 Concentration: 4,63 %CO Cyl. Press.:_ 660 psi. Crare Certified by: Date: 👸 4. #5X-40585 Concentration: %CO Cyl. Press.: 1/60 psi. Certified by: MATheson GAS Date: 4 10 0-595 Analyzer: Calibrated Range: 0-10% % Output: 0-10.0 **v.** Flow: <u>1.5 dscfh</u> Measured by: Rotameter: <u>X</u> Mass Flowmeter:_ Calibration Results % Point Cyl. Expected Actual % Adj. Curve Potentiometer # # CO Conc. Dif. Meter DVM Meter DVM Meter DVM Unadj. Adj. 1 1 626 0.0 ,000 -12 -.12 See nlent 6.40 0.00 D. 0.00 2.97 2 2 2.97 2.61 2.61 9.76 2.61 2.61 262 bye 4,68 3 3 4.03 403 4.03 4.16 4.14 . . . 4 4 1.40 29 1.40 1.29 .29 a constants 5 1 0,00 0.00 O,D وستعيب DOV 0,00

Comments:

LIQUID TECHNOLOGY CORPORATION

"INDUSTRY LEADER IN SPECIALTY GASES"

<u>Certificate of Analysis</u> - EPA PROTOCOL GAS -

OXARC, Inc (Spokane, WA) April 15, 2015 DR-56053 2.50% CO, 12.50% Carbon Dioxide/Nitrogen - EPA PROTOCOI April 15, 2015 April 16, 2023

Component Balance Gas

Carbon Monoxide, Carbon Dioxide Nitrogen

Analytical Data:

EPA Protocol, Section No. 2.2, Procedure G-1.

DO NOT USE BELOW 100 psig

<u>Replicate Concentrations</u> <u>Carbon Monoxide: 2.61% +/- 0.02%</u> <u>Carbon Dioxide: 12.45% +/- 0.10%</u> <u>Nitrogen: Balance</u>

Reference Standards:

SRM/GMIS: Cylinder Number: Concentration: Expiration Date: NIST Sample Number: SRM CAL-017030 4.009% CO (+/- 0.017%) 07/15/19 52-D-54 GMIS EB-0051547 9.923% CO2 (+/- 0.062%) 02/04/22 NA <u>GMIS Traceability</u> SRM-2745 CAL-016193 15.633% CO2 (+/- 0.037%) 06/02/17 9-C-55

Certification Instrumentation

Component: Make/Model: Serial Number: Principal of Measurement: Last Calibration:

Certified by:

Carbon Monoxide Nicolet 6700 APW1100563 FTIR April 15, 2015 Carbon Dioxide Nicolet 6700 APW1100563 FTIR April 04, 2015

Cylinder DataCylinder Serial Number:EB-0041761Cylinder Volume:119 Cubic FeetCylinder Volume:119 Cubic FeetCylinder Pressure:1700 psig, 70°FAnalytical Uncertainty and NIST Traceability are in compliance with EPA-600/R-12/531.

Cole Dylenti

Cole Dylewski

PGVP Vendor ID: E12015

"UNMATCHED EXCELLENCE"

2048 APEX COURT, APOPKA, FLORIDA 32703 ~ PHONE (407)-292-2990 FAX (407)-292-3313 WWW.LIQUIDTECHCORP.COM

APOPKA, FL • PASADENA, TX

Customer Date Delivery Receipt Gas Standard Final Analysis Date Expiration Date

WELDING PRODUCTS **INDUSTRIAL SUPPLIES** INDUSTRIAL GASES **MEDICAL GASES**

SPECIALTY GASES **BEVERAGE SYSTEMS** SAFETY PRODUCTS **FIRE EQUIPMENT**

WWW.OXARC.COM

MAIN OFFICE

SPOKANE, WA 99220 4003 E. BROADWAY P.O. BOX 2605 (509) 535-7794 FAX (509) 535-0368

BOISE, ID 83709 7615 W. LEMHI ST. · (208) 376-0377 FAX (208) 376-1133

COEUR D'ALENE, ID 83814 3530 RAMSEY RD. (208) 765-3311 FAX (208) 667-5974

> COLVILLE, WA 99114 328 W. 1ST. (509) 684-3776 FAX (509) 684-6742

ELLENSBURG, WA 98926 **704 N. WENAS** (509) 925-1518 FAX (509) 925-1136

HERMISTON, OR 97838 HEBMISTON-MCNARY HIWAY (503) 567-7377 FAX (503) 567-2265

KENNEWICK, WA 99336 800 W. COLUMBIA DR. (509) 582-4202 FAX (509) 586-9859

LEWISTON, ID 83501 2513 SRD. AVE., NORTH (208) 743-6571 FAX (208) 746-8374

MOSES LAKE, WA 98837 1401 WHEELER ROAD (509) 765-9247 FAX (509) 766-9958

OKANOGAN, WA 98840 2256 ELMWAY (509) 826-3205 FAX (509) 826-3905

PASCO, WA 99302 716 SOUTH OREGON (509) 547-2494 FAX (509) 547-3103

TWIN FALLS, ID 83303 729 COMMERCIAL AVE. (208) 734-9711 FAX (208) 734-7923

WENATCHEE, WA 98801 OHME GARDENS RD. (509) 662-8417 FAX (509) 662-1229

> YAKIMA, WA 98903 1004 EAST MEAD (509) 248-0827 FAX (509) 452-8704

Primary Standard Certificate of Analysis Method of Analysis Micro GC / Gravimetric **Customer: Myren Consulting Reference**# PM7234-2 P.O.# Cylinder# 250-1175

Results of Investigation

Component

Requested

Concentration

Air	N/A	N/A
Argon	n a chuir ann an Stair ann an Sta NAA	N/A
Carbon Dioxide	21.0%	21.0%
Carbon Monoxide	4.00%	4.03%
Helium		N/A
Hydrogen	N/A	N/A
Methane		N/A
Nitrogen	Balance	Balance
Oxygen	21.0%	21.0%
. .		

Hazard Class	UN 1956
DOT Shipping Name	Compressed Gas NOS
Shipping Volume (scf approximate)	160 sef @ ntp
Cylinder Pressure	1500 psig
CGA Valve Connection	350

Oxarc Primary Standard mixtures are prepared with gravimetric techniques using weights traceable to NIST. Mixture blended to +/- 1% relative to minor component and certified to +/- 1% analytical accuracy.

Date <u>8/25/97</u> Authorized Signature **Travis** Auger

Comments:

Analyst

1650 Enterprise Parkway

Twinsburg, Ohio 44087 215-648-4000

ask. . .The Gas Professionals[™] Certificate of Analysis - EPA Protocol Mixtures

MATHESON

TRI•GAS

Customer: OXARC II Cylinder Number: S>	NC (-40586	Proto G1	col: Refe 5193	rence # 23	Lot # 109-96-17643
Cylinder pressure: 16 Last Analysis date: 4/9 Expiration Date: 3/*	00 psig 9/2010 18/2013		NOT USE TH PRESSURE F	IS CYLINDE Alls Belov	R WHEN THE W 150 PSIG
			REPLIC/	ATE RESPON	SES
Component	: Oxygen	Date:	3/18/2010 5.98%	Date:	· ·
Certified Conc	: 5.98% ± 1% REL		5.98% 5.99%		н — н н
Component	: Carbon Dioxide	Date:	3/18/2010	Date:	· · · · · · · · · · · · · · · · · · ·
Certified Conc	6.04% ± 1% REL		6.03% 6.07% 6.01%		· · · · ·
Component	Carbon Monoxide	Date:	4/2/2010	Date:	4/9/2010
Certified Conc	1.29% ± 1% REL		1.30% 1.30% 1.30%	• •	1.29% 1.28% 1.29%
ANCE GAS:	Nitrogen				· · · · · · · · · · · · · · · · · · ·
REFERENCE STANDARD	S			·····	
Component: SRM #:	Oxygen NTRM-82658	Carbon Dioxide SRM-1674b		Carbon Moi SRM-2639a	noxide
Sample #:	01110212	7 - F-05		54-D-51	
Cylinder #: Concentration:	SX-20658 10.09%	CAL-014611 6,876 %		CAL-01388 0.991 %	9
CERTIFICATION INSTRU	MENTS				
Component.	- Oxygen	Carbon Dioxide -		Carbon Mon	oxide
Make/Model:	Rosemount 755	Varian 3800 GC	•	Varian 3800	GC
Serial Number:	2002832	LR-92489		LR-92489	
Measurement Principle: Last Calibration:	Paramagnetic 2/26/2010	TC, FID 3/16/2010		TC, FID 4/2/2010	
Notes:	T134744				

This certification was performed according to EPA Traceability Protocol for Assay & Certification of Gaseous Calibration Standards September 1997, using procedure G1 and/or G2.

Philip D. mat. Date ____ 4/12/2010

WOODSTOVE DATA SHEET # 30 STOVE STORAGE

The OPTIMUM DENSIFIED FUEL LOG STOVE tested by Myren Consulting, Inc. is being held in custody by:

509 FABRICATORS, INC.Phone 509 993 376714823 n. Peone Pines DriveMead, WA 99201Mead, WA 99201Contact: Dusty Henderson

The unit was tested at Myren Consulting's lab in Colville, WA. It was sealed on 1/10/2017 after the unit had cooled after testing. The seals were broken on 9/5/2017 just before the second EPA test run. The unit was resealed on 9/6/2017. The following pages contains photos taken before the seals were broken and the after the unit was resealed on 9/6/2017.

The unit was sealed with several lengths of metal banding/strapping that were placed around the stove in a manner that prevents the door from being opened. A label that clearly identifies the unit as a sealed EPA test stove and/ or a Myren Consulting, Inc. address label is placed over the strapping and taped into place with 2" clear packing tape. The stove was also loaded onto a pallet and strapped to a pallet for transport back to 509 Fab and to its final storage location. A sample stove storage label follows this page.

Once the unit is/ was certified by EPA, the unit will be returned to 509 Fab via the manufacturer's truck.

Carrier:

Shipped on:

Preunsealing on 9/5/2017

Resealed stove on 9/6/2017